Step | Hyp | Ref
| Expression |
1 | | cA |
. . . 4
class 𝐴 |
2 | | cr 10924 |
. . . 4
class
ℝ |
3 | 1, 2 | wss 3892 |
. . 3
wff 𝐴 ⊆
ℝ |
4 | | c0 4262 |
. . . 4
class
∅ |
5 | 1, 4 | wne 2940 |
. . 3
wff 𝐴 ≠ ∅ |
6 | | vy |
. . . . . . 7
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑦 |
8 | | vx |
. . . . . . 7
setvar 𝑥 |
9 | 8 | cv 1538 |
. . . . . 6
class 𝑥 |
10 | | cltrr 10929 |
. . . . . 6
class
<ℝ |
11 | 7, 9, 10 | wbr 5081 |
. . . . 5
wff 𝑦 <ℝ 𝑥 |
12 | 11, 6, 1 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 |
13 | 12, 8, 2 | wrex 3070 |
. . 3
wff
∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 |
14 | 3, 5, 13 | w3a 1087 |
. 2
wff (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) |
15 | 9, 7, 10 | wbr 5081 |
. . . . . 6
wff 𝑥 <ℝ 𝑦 |
16 | 15 | wn 3 |
. . . . 5
wff ¬
𝑥 <ℝ
𝑦 |
17 | 16, 6, 1 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 |
18 | | vz |
. . . . . . . . 9
setvar 𝑧 |
19 | 18 | cv 1538 |
. . . . . . . 8
class 𝑧 |
20 | 7, 19, 10 | wbr 5081 |
. . . . . . 7
wff 𝑦 <ℝ 𝑧 |
21 | 20, 18, 1 | wrex 3070 |
. . . . . 6
wff
∃𝑧 ∈
𝐴 𝑦 <ℝ 𝑧 |
22 | 11, 21 | wi 4 |
. . . . 5
wff (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧) |
23 | 22, 6, 2 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
ℝ (𝑦
<ℝ 𝑥
→ ∃𝑧 ∈
𝐴 𝑦 <ℝ 𝑧) |
24 | 17, 23 | wa 397 |
. . 3
wff
(∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) |
25 | 24, 8, 2 | wrex 3070 |
. 2
wff
∃𝑥 ∈
ℝ (∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) |
26 | 14, 25 | wi 4 |
1
wff ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |