MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulgt0 Structured version   Visualization version   GIF version

Theorem axmulgt0 11292
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 11189 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((0 < ๐ด โˆง 0 < ๐ต) โ†’ 0 < (๐ด ยท ๐ต)))

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 11189 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((0 <โ„ ๐ด โˆง 0 <โ„ ๐ต) โ†’ 0 <โ„ (๐ด ยท ๐ต)))
2 0re 11220 . . . 4 0 โˆˆ โ„
3 ltxrlt 11288 . . . 4 ((0 โˆˆ โ„ โˆง ๐ด โˆˆ โ„) โ†’ (0 < ๐ด โ†” 0 <โ„ ๐ด))
42, 3mpan 687 . . 3 (๐ด โˆˆ โ„ โ†’ (0 < ๐ด โ†” 0 <โ„ ๐ด))
5 ltxrlt 11288 . . . 4 ((0 โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (0 < ๐ต โ†” 0 <โ„ ๐ต))
62, 5mpan 687 . . 3 (๐ต โˆˆ โ„ โ†’ (0 < ๐ต โ†” 0 <โ„ ๐ต))
74, 6bi2anan9 636 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((0 < ๐ด โˆง 0 < ๐ต) โ†” (0 <โ„ ๐ด โˆง 0 <โ„ ๐ต)))
8 remulcl 11197 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด ยท ๐ต) โˆˆ โ„)
9 ltxrlt 11288 . . 3 ((0 โˆˆ โ„ โˆง (๐ด ยท ๐ต) โˆˆ โ„) โ†’ (0 < (๐ด ยท ๐ต) โ†” 0 <โ„ (๐ด ยท ๐ต)))
102, 8, 9sylancr 586 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (0 < (๐ด ยท ๐ต) โ†” 0 <โ„ (๐ด ยท ๐ต)))
111, 7, 103imtr4d 294 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((0 < ๐ด โˆง 0 < ๐ต) โ†’ 0 < (๐ด ยท ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆˆ wcel 2098   class class class wbr 5141  (class class class)co 7405  โ„cr 11111  0cc0 11112   <โ„ cltrr 11116   ยท cmul 11117   < clt 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-addrcl 11173  ax-mulrcl 11175  ax-rnegex 11183  ax-cnre 11185  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257
This theorem is referenced by:  mulgt0  11295  mulgt0i  11350  sin02gt0  16142  sinq12gt0  26397
  Copyright terms: Public domain W3C validator