![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axmulgt0 | Structured version Visualization version GIF version |
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 11186 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
axmulgt0 | โข ((๐ด โ โ โง ๐ต โ โ) โ ((0 < ๐ด โง 0 < ๐ต) โ 0 < (๐ด ยท ๐ต))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-mulgt0 11186 | . 2 โข ((๐ด โ โ โง ๐ต โ โ) โ ((0 <โ ๐ด โง 0 <โ ๐ต) โ 0 <โ (๐ด ยท ๐ต))) | |
2 | 0re 11215 | . . . 4 โข 0 โ โ | |
3 | ltxrlt 11283 | . . . 4 โข ((0 โ โ โง ๐ด โ โ) โ (0 < ๐ด โ 0 <โ ๐ด)) | |
4 | 2, 3 | mpan 688 | . . 3 โข (๐ด โ โ โ (0 < ๐ด โ 0 <โ ๐ด)) |
5 | ltxrlt 11283 | . . . 4 โข ((0 โ โ โง ๐ต โ โ) โ (0 < ๐ต โ 0 <โ ๐ต)) | |
6 | 2, 5 | mpan 688 | . . 3 โข (๐ต โ โ โ (0 < ๐ต โ 0 <โ ๐ต)) |
7 | 4, 6 | bi2anan9 637 | . 2 โข ((๐ด โ โ โง ๐ต โ โ) โ ((0 < ๐ด โง 0 < ๐ต) โ (0 <โ ๐ด โง 0 <โ ๐ต))) |
8 | remulcl 11194 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) โ โ) | |
9 | ltxrlt 11283 | . . 3 โข ((0 โ โ โง (๐ด ยท ๐ต) โ โ) โ (0 < (๐ด ยท ๐ต) โ 0 <โ (๐ด ยท ๐ต))) | |
10 | 2, 8, 9 | sylancr 587 | . 2 โข ((๐ด โ โ โง ๐ต โ โ) โ (0 < (๐ด ยท ๐ต) โ 0 <โ (๐ด ยท ๐ต))) |
11 | 1, 7, 10 | 3imtr4d 293 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ ((0 < ๐ด โง 0 < ๐ต) โ 0 < (๐ด ยท ๐ต))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 โ wcel 2106 class class class wbr 5148 (class class class)co 7408 โcr 11108 0cc0 11109 <โ cltrr 11113 ยท cmul 11114 < clt 11247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-addrcl 11170 ax-mulrcl 11172 ax-rnegex 11180 ax-cnre 11182 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 |
This theorem is referenced by: mulgt0 11290 mulgt0i 11345 sin02gt0 16134 sinq12gt0 26016 |
Copyright terms: Public domain | W3C validator |