Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axmulgt0 | Structured version Visualization version GIF version |
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 10879 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
axmulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-mulgt0 10879 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | |
2 | 0re 10908 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | ltxrlt 10976 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) | |
4 | 2, 3 | mpan 686 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) |
5 | ltxrlt 10976 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ 0 <ℝ 𝐵)) | |
6 | 2, 5 | mpan 686 | . . 3 ⊢ (𝐵 ∈ ℝ → (0 < 𝐵 ↔ 0 <ℝ 𝐵)) |
7 | 4, 6 | bi2anan9 635 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵))) |
8 | remulcl 10887 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
9 | ltxrlt 10976 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 <ℝ (𝐴 · 𝐵))) | |
10 | 2, 8, 9 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 <ℝ (𝐴 · 𝐵))) |
11 | 1, 7, 10 | 3imtr4d 293 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 <ℝ cltrr 10806 · cmul 10807 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-mulrcl 10865 ax-rnegex 10873 ax-cnre 10875 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: mulgt0 10983 mulgt0i 11037 sin02gt0 15829 sinq12gt0 25569 |
Copyright terms: Public domain | W3C validator |