MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Structured version   Visualization version   GIF version

Theorem axpre-sup 11209
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11336. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11233. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem axpre-sup
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 11172 . . . . . . 7 (𝑥 ∈ ℝ ↔ ((1st𝑥) ∈ R𝑥 = ⟨(1st𝑥), 0R⟩))
21simplbi 497 . . . . . 6 (𝑥 ∈ ℝ → (1st𝑥) ∈ R)
32adantl 481 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (1st𝑥) ∈ R)
4 fo1st 8034 . . . . . . . . . . . 12 1st :V–onto→V
5 fof 6820 . . . . . . . . . . . 12 (1st :V–onto→V → 1st :V⟶V)
6 ffn 6736 . . . . . . . . . . . 12 (1st :V⟶V → 1st Fn V)
74, 5, 6mp2b 10 . . . . . . . . . . 11 1st Fn V
8 ssv 4008 . . . . . . . . . . 11 𝐴 ⊆ V
9 fvelimab 6981 . . . . . . . . . . 11 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤))
107, 8, 9mp2an 692 . . . . . . . . . 10 (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤)
11 r19.29 3114 . . . . . . . . . . . 12 ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → ∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤))
12 ssel2 3978 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 ltresr2 11181 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ (1st𝑦) <R (1st𝑥)))
14 breq1 5146 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑦) = 𝑤 → ((1st𝑦) <R (1st𝑥) ↔ 𝑤 <R (1st𝑥)))
1513, 14sylan9bb 509 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1615biimpd 229 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1716exp31 419 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1918imp4b 421 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (((1st𝑦) = 𝑤𝑦 < 𝑥) → 𝑤 <R (1st𝑥)))
2019ancomsd 465 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2120an32s 652 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2221rexlimdva 3155 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2311, 22syl5 34 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2423expd 415 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (∃𝑦𝐴 (1st𝑦) = 𝑤𝑤 <R (1st𝑥))))
2510, 24syl7bi 255 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥))))
2625impr 454 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2726adantlr 715 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2827ralrimiv 3145 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥))
2928expr 456 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)))
30 brralrspcev 5203 . . . . 5 (((1st𝑥) ∈ R ∧ ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)) → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣)
313, 29, 30syl6an 684 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
3231rexlimdva 3155 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
33 n0 4353 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
34 fnfvima 7253 . . . . . . . . 9 ((1st Fn V ∧ 𝐴 ⊆ V ∧ 𝑦𝐴) → (1st𝑦) ∈ (1st𝐴))
357, 8, 34mp3an12 1453 . . . . . . . 8 (𝑦𝐴 → (1st𝑦) ∈ (1st𝐴))
3635ne0d 4342 . . . . . . 7 (𝑦𝐴 → (1st𝐴) ≠ ∅)
3736exlimiv 1930 . . . . . 6 (∃𝑦 𝑦𝐴 → (1st𝐴) ≠ ∅)
3833, 37sylbi 217 . . . . 5 (𝐴 ≠ ∅ → (1st𝐴) ≠ ∅)
39 supsr 11152 . . . . . 6 (((1st𝐴) ≠ ∅ ∧ ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣) → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)))
4039ex 412 . . . . 5 ((1st𝐴) ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4138, 40syl 17 . . . 4 (𝐴 ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4241adantl 481 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
43 breq2 5147 . . . . . . . . . . . 12 (𝑤 = (1st𝑦) → (𝑣 <R 𝑤𝑣 <R (1st𝑦)))
4443notbid 318 . . . . . . . . . . 11 (𝑤 = (1st𝑦) → (¬ 𝑣 <R 𝑤 ↔ ¬ 𝑣 <R (1st𝑦)))
4544rspccv 3619 . . . . . . . . . 10 (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ((1st𝑦) ∈ (1st𝐴) → ¬ 𝑣 <R (1st𝑦)))
4635, 45syl5com 31 . . . . . . . . 9 (𝑦𝐴 → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
4746adantl 481 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
48 elreal2 11172 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↔ ((1st𝑦) ∈ R𝑦 = ⟨(1st𝑦), 0R⟩))
4948simprbi 496 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 = ⟨(1st𝑦), 0R⟩)
5049breq2d 5155 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦 ↔ ⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩))
51 ltresr 11180 . . . . . . . . . . 11 (⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩ ↔ 𝑣 <R (1st𝑦))
5250, 51bitrdi 287 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5312, 52syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5453notbid 318 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (¬ ⟨𝑣, 0R⟩ < 𝑦 ↔ ¬ 𝑣 <R (1st𝑦)))
5547, 54sylibrd 259 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ ⟨𝑣, 0R⟩ < 𝑦))
5655ralrimdva 3154 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
5756ad2antrr 726 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
5849breq1d 5153 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ ⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩))
59 ltresr 11180 . . . . . . . . . . . . . 14 (⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣)
6058, 59bitrdi 287 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣))
6148simplbi 497 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (1st𝑦) ∈ R)
62 breq1 5146 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (𝑤 <R 𝑣 ↔ (1st𝑦) <R 𝑣))
63 breq1 5146 . . . . . . . . . . . . . . . . . 18 (𝑤 = (1st𝑦) → (𝑤 <R 𝑢 ↔ (1st𝑦) <R 𝑢))
6463rexbidv 3179 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢 ↔ ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢))
6562, 64imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑤 = (1st𝑦) → ((𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) ↔ ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6665rspccv 3619 . . . . . . . . . . . . . . 15 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ((1st𝑦) ∈ R → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6761, 66syl5 34 . . . . . . . . . . . . . 14 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6867com3l 89 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6960, 68sylbid 240 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7069adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
71 fvelimab 6981 . . . . . . . . . . . . . . . 16 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢))
727, 8, 71mp2an 692 . . . . . . . . . . . . . . 15 (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢)
73 ssel2 3978 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
74 ltresr2 11181 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
7573, 74sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
76 breq2 5147 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑧) = 𝑢 → ((1st𝑦) <R (1st𝑧) ↔ (1st𝑦) <R 𝑢))
7775, 76sylan9bb 509 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) ∧ (1st𝑧) = 𝑢) → (𝑦 < 𝑧 ↔ (1st𝑦) <R 𝑢))
7877exbiri 811 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧)))
7978expr 456 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧))))
8079com4r 94 . . . . . . . . . . . . . . . . 17 ((1st𝑦) <R 𝑢 → ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧))))
8180imp 406 . . . . . . . . . . . . . . . 16 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧)))
8281reximdvai 3165 . . . . . . . . . . . . . . 15 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (∃𝑧𝐴 (1st𝑧) = 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8372, 82biimtrid 242 . . . . . . . . . . . . . 14 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧))
8483expcom 413 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((1st𝑦) <R 𝑢 → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧)))
8584com23 86 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑢 ∈ (1st𝐴) → ((1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧)))
8685rexlimdv 3153 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8770, 86syl6d 75 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑧𝐴 𝑦 < 𝑧)))
8887com23 86 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
8988ex 412 . . . . . . . 8 (𝑦 ∈ ℝ → (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9089com3l 89 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9190ad2antrr 726 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9291ralrimdv 3152 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
93 opelreal 11170 . . . . . . . 8 (⟨𝑣, 0R⟩ ∈ ℝ ↔ 𝑣R)
9493biimpri 228 . . . . . . 7 (𝑣R → ⟨𝑣, 0R⟩ ∈ ℝ)
9594adantl 481 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ⟨𝑣, 0R⟩ ∈ ℝ)
96 breq1 5146 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑥 < 𝑦 ↔ ⟨𝑣, 0R⟩ < 𝑦))
9796notbid 318 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → (¬ 𝑥 < 𝑦 ↔ ¬ ⟨𝑣, 0R⟩ < 𝑦))
9897ralbidv 3178 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
99 breq2 5147 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑦 < 𝑥𝑦 <𝑣, 0R⟩))
10099imbi1d 341 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
101100ralbidv 3178 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
10298, 101anbi12d 632 . . . . . . . 8 (𝑥 = ⟨𝑣, 0R⟩ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
103102rspcev 3622 . . . . . . 7 ((⟨𝑣, 0R⟩ ∈ ℝ ∧ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
104103ex 412 . . . . . 6 (⟨𝑣, 0R⟩ ∈ ℝ → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10595, 104syl 17 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10657, 92, 105syl2and 608 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
107106rexlimdva 3155 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10832, 42, 1073syld 60 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
1091083impia 1118 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  wss 3951  c0 4333  cop 4632   class class class wbr 5143  cima 5688   Fn wfn 6556  wf 6557  ontowfo 6559  cfv 6561  1st c1st 8012  Rcnr 10905  0Rc0r 10906   <R cltr 10911  cr 11154   < cltrr 11159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-1p 11022  df-plp 11023  df-mp 11024  df-ltp 11025  df-enr 11095  df-nr 11096  df-plr 11097  df-mr 11098  df-ltr 11099  df-0r 11100  df-1r 11101  df-m1r 11102  df-r 11165  df-lt 11168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator