MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Structured version   Visualization version   GIF version

Theorem axpre-sup 11129
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11256. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11153. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem axpre-sup
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 11092 . . . . . . 7 (𝑥 ∈ ℝ ↔ ((1st𝑥) ∈ R𝑥 = ⟨(1st𝑥), 0R⟩))
21simplbi 497 . . . . . 6 (𝑥 ∈ ℝ → (1st𝑥) ∈ R)
32adantl 481 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (1st𝑥) ∈ R)
4 fo1st 7991 . . . . . . . . . . . 12 1st :V–onto→V
5 fof 6775 . . . . . . . . . . . 12 (1st :V–onto→V → 1st :V⟶V)
6 ffn 6691 . . . . . . . . . . . 12 (1st :V⟶V → 1st Fn V)
74, 5, 6mp2b 10 . . . . . . . . . . 11 1st Fn V
8 ssv 3974 . . . . . . . . . . 11 𝐴 ⊆ V
9 fvelimab 6936 . . . . . . . . . . 11 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤))
107, 8, 9mp2an 692 . . . . . . . . . 10 (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤)
11 r19.29 3095 . . . . . . . . . . . 12 ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → ∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤))
12 ssel2 3944 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 ltresr2 11101 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ (1st𝑦) <R (1st𝑥)))
14 breq1 5113 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑦) = 𝑤 → ((1st𝑦) <R (1st𝑥) ↔ 𝑤 <R (1st𝑥)))
1513, 14sylan9bb 509 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1615biimpd 229 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1716exp31 419 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1918imp4b 421 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (((1st𝑦) = 𝑤𝑦 < 𝑥) → 𝑤 <R (1st𝑥)))
2019ancomsd 465 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2120an32s 652 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2221rexlimdva 3135 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2311, 22syl5 34 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2423expd 415 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (∃𝑦𝐴 (1st𝑦) = 𝑤𝑤 <R (1st𝑥))))
2510, 24syl7bi 255 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥))))
2625impr 454 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2726adantlr 715 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2827ralrimiv 3125 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥))
2928expr 456 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)))
30 brralrspcev 5170 . . . . 5 (((1st𝑥) ∈ R ∧ ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)) → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣)
313, 29, 30syl6an 684 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
3231rexlimdva 3135 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
33 n0 4319 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
34 fnfvima 7210 . . . . . . . . 9 ((1st Fn V ∧ 𝐴 ⊆ V ∧ 𝑦𝐴) → (1st𝑦) ∈ (1st𝐴))
357, 8, 34mp3an12 1453 . . . . . . . 8 (𝑦𝐴 → (1st𝑦) ∈ (1st𝐴))
3635ne0d 4308 . . . . . . 7 (𝑦𝐴 → (1st𝐴) ≠ ∅)
3736exlimiv 1930 . . . . . 6 (∃𝑦 𝑦𝐴 → (1st𝐴) ≠ ∅)
3833, 37sylbi 217 . . . . 5 (𝐴 ≠ ∅ → (1st𝐴) ≠ ∅)
39 supsr 11072 . . . . . 6 (((1st𝐴) ≠ ∅ ∧ ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣) → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)))
4039ex 412 . . . . 5 ((1st𝐴) ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4138, 40syl 17 . . . 4 (𝐴 ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4241adantl 481 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
43 breq2 5114 . . . . . . . . . . . 12 (𝑤 = (1st𝑦) → (𝑣 <R 𝑤𝑣 <R (1st𝑦)))
4443notbid 318 . . . . . . . . . . 11 (𝑤 = (1st𝑦) → (¬ 𝑣 <R 𝑤 ↔ ¬ 𝑣 <R (1st𝑦)))
4544rspccv 3588 . . . . . . . . . 10 (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ((1st𝑦) ∈ (1st𝐴) → ¬ 𝑣 <R (1st𝑦)))
4635, 45syl5com 31 . . . . . . . . 9 (𝑦𝐴 → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
4746adantl 481 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
48 elreal2 11092 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↔ ((1st𝑦) ∈ R𝑦 = ⟨(1st𝑦), 0R⟩))
4948simprbi 496 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 = ⟨(1st𝑦), 0R⟩)
5049breq2d 5122 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦 ↔ ⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩))
51 ltresr 11100 . . . . . . . . . . 11 (⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩ ↔ 𝑣 <R (1st𝑦))
5250, 51bitrdi 287 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5312, 52syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5453notbid 318 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (¬ ⟨𝑣, 0R⟩ < 𝑦 ↔ ¬ 𝑣 <R (1st𝑦)))
5547, 54sylibrd 259 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ ⟨𝑣, 0R⟩ < 𝑦))
5655ralrimdva 3134 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
5756ad2antrr 726 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
5849breq1d 5120 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ ⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩))
59 ltresr 11100 . . . . . . . . . . . . . 14 (⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣)
6058, 59bitrdi 287 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣))
6148simplbi 497 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (1st𝑦) ∈ R)
62 breq1 5113 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (𝑤 <R 𝑣 ↔ (1st𝑦) <R 𝑣))
63 breq1 5113 . . . . . . . . . . . . . . . . . 18 (𝑤 = (1st𝑦) → (𝑤 <R 𝑢 ↔ (1st𝑦) <R 𝑢))
6463rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢 ↔ ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢))
6562, 64imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑤 = (1st𝑦) → ((𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) ↔ ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6665rspccv 3588 . . . . . . . . . . . . . . 15 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ((1st𝑦) ∈ R → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6761, 66syl5 34 . . . . . . . . . . . . . 14 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6867com3l 89 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6960, 68sylbid 240 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7069adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
71 fvelimab 6936 . . . . . . . . . . . . . . . 16 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢))
727, 8, 71mp2an 692 . . . . . . . . . . . . . . 15 (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢)
73 ssel2 3944 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
74 ltresr2 11101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
7573, 74sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
76 breq2 5114 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑧) = 𝑢 → ((1st𝑦) <R (1st𝑧) ↔ (1st𝑦) <R 𝑢))
7775, 76sylan9bb 509 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) ∧ (1st𝑧) = 𝑢) → (𝑦 < 𝑧 ↔ (1st𝑦) <R 𝑢))
7877exbiri 810 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧)))
7978expr 456 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧))))
8079com4r 94 . . . . . . . . . . . . . . . . 17 ((1st𝑦) <R 𝑢 → ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧))))
8180imp 406 . . . . . . . . . . . . . . . 16 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧)))
8281reximdvai 3145 . . . . . . . . . . . . . . 15 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (∃𝑧𝐴 (1st𝑧) = 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8372, 82biimtrid 242 . . . . . . . . . . . . . 14 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧))
8483expcom 413 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((1st𝑦) <R 𝑢 → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧)))
8584com23 86 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑢 ∈ (1st𝐴) → ((1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧)))
8685rexlimdv 3133 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8770, 86syl6d 75 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑧𝐴 𝑦 < 𝑧)))
8887com23 86 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
8988ex 412 . . . . . . . 8 (𝑦 ∈ ℝ → (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9089com3l 89 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9190ad2antrr 726 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9291ralrimdv 3132 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
93 opelreal 11090 . . . . . . . 8 (⟨𝑣, 0R⟩ ∈ ℝ ↔ 𝑣R)
9493biimpri 228 . . . . . . 7 (𝑣R → ⟨𝑣, 0R⟩ ∈ ℝ)
9594adantl 481 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ⟨𝑣, 0R⟩ ∈ ℝ)
96 breq1 5113 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑥 < 𝑦 ↔ ⟨𝑣, 0R⟩ < 𝑦))
9796notbid 318 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → (¬ 𝑥 < 𝑦 ↔ ¬ ⟨𝑣, 0R⟩ < 𝑦))
9897ralbidv 3157 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
99 breq2 5114 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑦 < 𝑥𝑦 <𝑣, 0R⟩))
10099imbi1d 341 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
101100ralbidv 3157 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
10298, 101anbi12d 632 . . . . . . . 8 (𝑥 = ⟨𝑣, 0R⟩ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
103102rspcev 3591 . . . . . . 7 ((⟨𝑣, 0R⟩ ∈ ℝ ∧ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
104103ex 412 . . . . . 6 (⟨𝑣, 0R⟩ ∈ ℝ → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10595, 104syl 17 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10657, 92, 105syl2and 608 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
107106rexlimdva 3135 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10832, 42, 1073syld 60 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
1091083impia 1117 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  cop 4598   class class class wbr 5110  cima 5644   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  1st c1st 7969  Rcnr 10825  0Rc0r 10826   <R cltr 10831  cr 11074   < cltrr 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-1p 10942  df-plp 10943  df-mp 10944  df-ltp 10945  df-enr 11015  df-nr 11016  df-plr 11017  df-mr 11018  df-ltr 11019  df-0r 11020  df-1r 11021  df-m1r 11022  df-r 11085  df-lt 11088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator