MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Structured version   Visualization version   GIF version

Theorem axpre-sup 11164
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11289. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11188. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
Distinct variable group:   π‘₯,𝑦,𝑧,𝐴

Proof of Theorem axpre-sup
Dummy variables 𝑀 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 11127 . . . . . . 7 (π‘₯ ∈ ℝ ↔ ((1st β€˜π‘₯) ∈ R ∧ π‘₯ = ⟨(1st β€˜π‘₯), 0R⟩))
21simplbi 499 . . . . . 6 (π‘₯ ∈ ℝ β†’ (1st β€˜π‘₯) ∈ R)
32adantl 483 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ π‘₯ ∈ ℝ) β†’ (1st β€˜π‘₯) ∈ R)
4 fo1st 7995 . . . . . . . . . . . 12 1st :V–ontoβ†’V
5 fof 6806 . . . . . . . . . . . 12 (1st :V–ontoβ†’V β†’ 1st :V⟢V)
6 ffn 6718 . . . . . . . . . . . 12 (1st :V⟢V β†’ 1st Fn V)
74, 5, 6mp2b 10 . . . . . . . . . . 11 1st Fn V
8 ssv 4007 . . . . . . . . . . 11 𝐴 βŠ† V
9 fvelimab 6965 . . . . . . . . . . 11 ((1st Fn V ∧ 𝐴 βŠ† V) β†’ (𝑀 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀))
107, 8, 9mp2an 691 . . . . . . . . . 10 (𝑀 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀)
11 r19.29 3115 . . . . . . . . . . . 12 ((βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀) β†’ βˆƒπ‘¦ ∈ 𝐴 (𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀))
12 ssel2 3978 . . . . . . . . . . . . . . . . 17 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ 𝑦 ∈ ℝ)
13 ltresr2 11136 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ π‘₯ ∈ ℝ) β†’ (𝑦 <ℝ π‘₯ ↔ (1st β€˜π‘¦) <R (1st β€˜π‘₯)))
14 breq1 5152 . . . . . . . . . . . . . . . . . . . 20 ((1st β€˜π‘¦) = 𝑀 β†’ ((1st β€˜π‘¦) <R (1st β€˜π‘₯) ↔ 𝑀 <R (1st β€˜π‘₯)))
1513, 14sylan9bb 511 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ π‘₯ ∈ ℝ) ∧ (1st β€˜π‘¦) = 𝑀) β†’ (𝑦 <ℝ π‘₯ ↔ 𝑀 <R (1st β€˜π‘₯)))
1615biimpd 228 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ π‘₯ ∈ ℝ) ∧ (1st β€˜π‘¦) = 𝑀) β†’ (𝑦 <ℝ π‘₯ β†’ 𝑀 <R (1st β€˜π‘₯)))
1716exp31 421 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ β†’ (π‘₯ ∈ ℝ β†’ ((1st β€˜π‘¦) = 𝑀 β†’ (𝑦 <ℝ π‘₯ β†’ 𝑀 <R (1st β€˜π‘₯)))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ ∈ ℝ β†’ ((1st β€˜π‘¦) = 𝑀 β†’ (𝑦 <ℝ π‘₯ β†’ 𝑀 <R (1st β€˜π‘₯)))))
1918imp4b 423 . . . . . . . . . . . . . . 15 (((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) ∧ π‘₯ ∈ ℝ) β†’ (((1st β€˜π‘¦) = 𝑀 ∧ 𝑦 <ℝ π‘₯) β†’ 𝑀 <R (1st β€˜π‘₯)))
2019ancomsd 467 . . . . . . . . . . . . . 14 (((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) ∧ π‘₯ ∈ ℝ) β†’ ((𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2120an32s 651 . . . . . . . . . . . . 13 (((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) ∧ 𝑦 ∈ 𝐴) β†’ ((𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2221rexlimdva 3156 . . . . . . . . . . . 12 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ (βˆƒπ‘¦ ∈ 𝐴 (𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2311, 22syl5 34 . . . . . . . . . . 11 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ ((βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2423expd 417 . . . . . . . . . 10 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ (βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀 β†’ 𝑀 <R (1st β€˜π‘₯))))
2510, 24syl7bi 255 . . . . . . . . 9 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ (𝑀 ∈ (1st β€œ 𝐴) β†’ 𝑀 <R (1st β€˜π‘₯))))
2625impr 456 . . . . . . . 8 ((𝐴 βŠ† ℝ ∧ (π‘₯ ∈ ℝ ∧ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)) β†’ (𝑀 ∈ (1st β€œ 𝐴) β†’ 𝑀 <R (1st β€˜π‘₯)))
2726adantlr 714 . . . . . . 7 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ (π‘₯ ∈ ℝ ∧ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)) β†’ (𝑀 ∈ (1st β€œ 𝐴) β†’ 𝑀 <R (1st β€˜π‘₯)))
2827ralrimiv 3146 . . . . . 6 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ (π‘₯ ∈ ℝ ∧ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)) β†’ βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R (1st β€˜π‘₯))
2928expr 458 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R (1st β€˜π‘₯)))
30 brralrspcev 5209 . . . . 5 (((1st β€˜π‘₯) ∈ R ∧ βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R (1st β€˜π‘₯)) β†’ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣)
313, 29, 30syl6an 683 . . . 4 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣))
3231rexlimdva 3156 . . 3 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣))
33 n0 4347 . . . . . 6 (𝐴 β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ 𝐴)
34 fnfvima 7235 . . . . . . . . 9 ((1st Fn V ∧ 𝐴 βŠ† V ∧ 𝑦 ∈ 𝐴) β†’ (1st β€˜π‘¦) ∈ (1st β€œ 𝐴))
357, 8, 34mp3an12 1452 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (1st β€˜π‘¦) ∈ (1st β€œ 𝐴))
3635ne0d 4336 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ (1st β€œ 𝐴) β‰  βˆ…)
3736exlimiv 1934 . . . . . 6 (βˆƒπ‘¦ 𝑦 ∈ 𝐴 β†’ (1st β€œ 𝐴) β‰  βˆ…)
3833, 37sylbi 216 . . . . 5 (𝐴 β‰  βˆ… β†’ (1st β€œ 𝐴) β‰  βˆ…)
39 supsr 11107 . . . . . 6 (((1st β€œ 𝐴) β‰  βˆ… ∧ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣) β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒)))
4039ex 414 . . . . 5 ((1st β€œ 𝐴) β‰  βˆ… β†’ (βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣 β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒))))
4138, 40syl 17 . . . 4 (𝐴 β‰  βˆ… β†’ (βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣 β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒))))
4241adantl 483 . . 3 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣 β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒))))
43 breq2 5153 . . . . . . . . . . . 12 (𝑀 = (1st β€˜π‘¦) β†’ (𝑣 <R 𝑀 ↔ 𝑣 <R (1st β€˜π‘¦)))
4443notbid 318 . . . . . . . . . . 11 (𝑀 = (1st β€˜π‘¦) β†’ (Β¬ 𝑣 <R 𝑀 ↔ Β¬ 𝑣 <R (1st β€˜π‘¦)))
4544rspccv 3610 . . . . . . . . . 10 (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ ((1st β€˜π‘¦) ∈ (1st β€œ 𝐴) β†’ Β¬ 𝑣 <R (1st β€˜π‘¦)))
4635, 45syl5com 31 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ Β¬ 𝑣 <R (1st β€˜π‘¦)))
4746adantl 483 . . . . . . . 8 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ Β¬ 𝑣 <R (1st β€˜π‘¦)))
48 elreal2 11127 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↔ ((1st β€˜π‘¦) ∈ R ∧ 𝑦 = ⟨(1st β€˜π‘¦), 0R⟩))
4948simprbi 498 . . . . . . . . . . . 12 (𝑦 ∈ ℝ β†’ 𝑦 = ⟨(1st β€˜π‘¦), 0R⟩)
5049breq2d 5161 . . . . . . . . . . 11 (𝑦 ∈ ℝ β†’ (βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ βŸ¨π‘£, 0R⟩ <ℝ ⟨(1st β€˜π‘¦), 0R⟩))
51 ltresr 11135 . . . . . . . . . . 11 (βŸ¨π‘£, 0R⟩ <ℝ ⟨(1st β€˜π‘¦), 0R⟩ ↔ 𝑣 <R (1st β€˜π‘¦))
5250, 51bitrdi 287 . . . . . . . . . 10 (𝑦 ∈ ℝ β†’ (βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ 𝑣 <R (1st β€˜π‘¦)))
5312, 52syl 17 . . . . . . . . 9 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ 𝑣 <R (1st β€˜π‘¦)))
5453notbid 318 . . . . . . . 8 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ Β¬ 𝑣 <R (1st β€˜π‘¦)))
5547, 54sylibrd 259 . . . . . . 7 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
5655ralrimdva 3155 . . . . . 6 (𝐴 βŠ† ℝ β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
5756ad2antrr 725 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
5849breq1d 5159 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ ↔ ⟨(1st β€˜π‘¦), 0R⟩ <ℝ βŸ¨π‘£, 0R⟩))
59 ltresr 11135 . . . . . . . . . . . . . 14 (⟨(1st β€˜π‘¦), 0R⟩ <ℝ βŸ¨π‘£, 0R⟩ ↔ (1st β€˜π‘¦) <R 𝑣)
6058, 59bitrdi 287 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ ↔ (1st β€˜π‘¦) <R 𝑣))
6148simplbi 499 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ β†’ (1st β€˜π‘¦) ∈ R)
62 breq1 5152 . . . . . . . . . . . . . . . . 17 (𝑀 = (1st β€˜π‘¦) β†’ (𝑀 <R 𝑣 ↔ (1st β€˜π‘¦) <R 𝑣))
63 breq1 5152 . . . . . . . . . . . . . . . . . 18 (𝑀 = (1st β€˜π‘¦) β†’ (𝑀 <R 𝑒 ↔ (1st β€˜π‘¦) <R 𝑒))
6463rexbidv 3179 . . . . . . . . . . . . . . . . 17 (𝑀 = (1st β€˜π‘¦) β†’ (βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒 ↔ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒))
6562, 64imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑀 = (1st β€˜π‘¦) β†’ ((𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) ↔ ((1st β€˜π‘¦) <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6665rspccv 3610 . . . . . . . . . . . . . . 15 (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ ((1st β€˜π‘¦) ∈ R β†’ ((1st β€˜π‘¦) <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6761, 66syl5 34 . . . . . . . . . . . . . 14 (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 ∈ ℝ β†’ ((1st β€˜π‘¦) <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6867com3l 89 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ β†’ ((1st β€˜π‘¦) <R 𝑣 β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6960, 68sylbid 239 . . . . . . . . . . . 12 (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
7069adantr 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
71 fvelimab 6965 . . . . . . . . . . . . . . . 16 ((1st Fn V ∧ 𝐴 βŠ† V) β†’ (𝑒 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘§ ∈ 𝐴 (1st β€˜π‘§) = 𝑒))
727, 8, 71mp2an 691 . . . . . . . . . . . . . . 15 (𝑒 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘§ ∈ 𝐴 (1st β€˜π‘§) = 𝑒)
73 ssel2 3978 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 ∈ ℝ)
74 ltresr2 11136 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) β†’ (𝑦 <ℝ 𝑧 ↔ (1st β€˜π‘¦) <R (1st β€˜π‘§)))
7573, 74sylan2 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴)) β†’ (𝑦 <ℝ 𝑧 ↔ (1st β€˜π‘¦) <R (1st β€˜π‘§)))
76 breq2 5153 . . . . . . . . . . . . . . . . . . . . 21 ((1st β€˜π‘§) = 𝑒 β†’ ((1st β€˜π‘¦) <R (1st β€˜π‘§) ↔ (1st β€˜π‘¦) <R 𝑒))
7775, 76sylan9bb 511 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ (𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴)) ∧ (1st β€˜π‘§) = 𝑒) β†’ (𝑦 <ℝ 𝑧 ↔ (1st β€˜π‘¦) <R 𝑒))
7877exbiri 810 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ (𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴)) β†’ ((1st β€˜π‘§) = 𝑒 β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ 𝑦 <ℝ 𝑧)))
7978expr 458 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑧 ∈ 𝐴 β†’ ((1st β€˜π‘§) = 𝑒 β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ 𝑦 <ℝ 𝑧))))
8079com4r 94 . . . . . . . . . . . . . . . . 17 ((1st β€˜π‘¦) <R 𝑒 β†’ ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑧 ∈ 𝐴 β†’ ((1st β€˜π‘§) = 𝑒 β†’ 𝑦 <ℝ 𝑧))))
8180imp 408 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘¦) <R 𝑒 ∧ (𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ)) β†’ (𝑧 ∈ 𝐴 β†’ ((1st β€˜π‘§) = 𝑒 β†’ 𝑦 <ℝ 𝑧)))
8281reximdvai 3166 . . . . . . . . . . . . . . 15 (((1st β€˜π‘¦) <R 𝑒 ∧ (𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ)) β†’ (βˆƒπ‘§ ∈ 𝐴 (1st β€˜π‘§) = 𝑒 β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))
8372, 82biimtrid 241 . . . . . . . . . . . . . 14 (((1st β€˜π‘¦) <R 𝑒 ∧ (𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ)) β†’ (𝑒 ∈ (1st β€œ 𝐴) β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))
8483expcom 415 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ (𝑒 ∈ (1st β€œ 𝐴) β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8584com23 86 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑒 ∈ (1st β€œ 𝐴) β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8685rexlimdv 3154 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒 β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))
8770, 86syl6d 75 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8887com23 86 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8988ex 414 . . . . . . . 8 (𝑦 ∈ ℝ β†’ (𝐴 βŠ† ℝ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
9089com3l 89 . . . . . . 7 (𝐴 βŠ† ℝ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
9190ad2antrr 725 . . . . . 6 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
9291ralrimdv 3153 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
93 opelreal 11125 . . . . . . . 8 (βŸ¨π‘£, 0R⟩ ∈ ℝ ↔ 𝑣 ∈ R)
9493biimpri 227 . . . . . . 7 (𝑣 ∈ R β†’ βŸ¨π‘£, 0R⟩ ∈ ℝ)
9594adantl 483 . . . . . 6 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ βŸ¨π‘£, 0R⟩ ∈ ℝ)
96 breq1 5152 . . . . . . . . . . 11 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (π‘₯ <ℝ 𝑦 ↔ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
9796notbid 318 . . . . . . . . . 10 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (Β¬ π‘₯ <ℝ 𝑦 ↔ Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
9897ralbidv 3178 . . . . . . . . 9 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ↔ βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
99 breq2 5153 . . . . . . . . . . 11 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (𝑦 <ℝ π‘₯ ↔ 𝑦 <ℝ βŸ¨π‘£, 0R⟩))
10099imbi1d 342 . . . . . . . . . 10 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ ((𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
101100ralbidv 3178 . . . . . . . . 9 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
10298, 101anbi12d 632 . . . . . . . 8 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ ((βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ (βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
103102rspcev 3613 . . . . . . 7 ((βŸ¨π‘£, 0R⟩ ∈ ℝ ∧ (βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
104103ex 414 . . . . . 6 (βŸ¨π‘£, 0R⟩ ∈ ℝ β†’ ((βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
10595, 104syl 17 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ ((βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
10657, 92, 105syl2and 609 . . . 4 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ ((βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
107106rexlimdva 3156 . . 3 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
10832, 42, 1073syld 60 . 2 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
1091083impia 1118 1 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   βŠ† wss 3949  βˆ…c0 4323  βŸ¨cop 4635   class class class wbr 5149   β€œ cima 5680   Fn wfn 6539  βŸΆwf 6540  β€“ontoβ†’wfo 6542  β€˜cfv 6544  1st c1st 7973  Rcnr 10860  0Rc0r 10861   <R cltr 10866  β„cr 11109   <ℝ cltrr 11114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-ni 10867  df-pli 10868  df-mi 10869  df-lti 10870  df-plpq 10903  df-mpq 10904  df-ltpq 10905  df-enq 10906  df-nq 10907  df-erq 10908  df-plq 10909  df-mq 10910  df-1nq 10911  df-rq 10912  df-ltnq 10913  df-np 10976  df-1p 10977  df-plp 10978  df-mp 10979  df-ltp 10980  df-enr 11050  df-nr 11051  df-plr 11052  df-mr 11053  df-ltr 11054  df-0r 11055  df-1r 11056  df-m1r 11057  df-r 11120  df-lt 11123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator