MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Structured version   Visualization version   GIF version

Theorem axpre-sup 11183
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11310. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11207. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem axpre-sup
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 11146 . . . . . . 7 (𝑥 ∈ ℝ ↔ ((1st𝑥) ∈ R𝑥 = ⟨(1st𝑥), 0R⟩))
21simplbi 497 . . . . . 6 (𝑥 ∈ ℝ → (1st𝑥) ∈ R)
32adantl 481 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (1st𝑥) ∈ R)
4 fo1st 8008 . . . . . . . . . . . 12 1st :V–onto→V
5 fof 6790 . . . . . . . . . . . 12 (1st :V–onto→V → 1st :V⟶V)
6 ffn 6706 . . . . . . . . . . . 12 (1st :V⟶V → 1st Fn V)
74, 5, 6mp2b 10 . . . . . . . . . . 11 1st Fn V
8 ssv 3983 . . . . . . . . . . 11 𝐴 ⊆ V
9 fvelimab 6951 . . . . . . . . . . 11 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤))
107, 8, 9mp2an 692 . . . . . . . . . 10 (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤)
11 r19.29 3101 . . . . . . . . . . . 12 ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → ∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤))
12 ssel2 3953 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 ltresr2 11155 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ (1st𝑦) <R (1st𝑥)))
14 breq1 5122 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑦) = 𝑤 → ((1st𝑦) <R (1st𝑥) ↔ 𝑤 <R (1st𝑥)))
1513, 14sylan9bb 509 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1615biimpd 229 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1716exp31 419 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1918imp4b 421 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (((1st𝑦) = 𝑤𝑦 < 𝑥) → 𝑤 <R (1st𝑥)))
2019ancomsd 465 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2120an32s 652 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2221rexlimdva 3141 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2311, 22syl5 34 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2423expd 415 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (∃𝑦𝐴 (1st𝑦) = 𝑤𝑤 <R (1st𝑥))))
2510, 24syl7bi 255 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥))))
2625impr 454 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2726adantlr 715 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2827ralrimiv 3131 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥))
2928expr 456 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)))
30 brralrspcev 5179 . . . . 5 (((1st𝑥) ∈ R ∧ ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)) → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣)
313, 29, 30syl6an 684 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
3231rexlimdva 3141 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
33 n0 4328 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
34 fnfvima 7225 . . . . . . . . 9 ((1st Fn V ∧ 𝐴 ⊆ V ∧ 𝑦𝐴) → (1st𝑦) ∈ (1st𝐴))
357, 8, 34mp3an12 1453 . . . . . . . 8 (𝑦𝐴 → (1st𝑦) ∈ (1st𝐴))
3635ne0d 4317 . . . . . . 7 (𝑦𝐴 → (1st𝐴) ≠ ∅)
3736exlimiv 1930 . . . . . 6 (∃𝑦 𝑦𝐴 → (1st𝐴) ≠ ∅)
3833, 37sylbi 217 . . . . 5 (𝐴 ≠ ∅ → (1st𝐴) ≠ ∅)
39 supsr 11126 . . . . . 6 (((1st𝐴) ≠ ∅ ∧ ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣) → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)))
4039ex 412 . . . . 5 ((1st𝐴) ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4138, 40syl 17 . . . 4 (𝐴 ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4241adantl 481 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
43 breq2 5123 . . . . . . . . . . . 12 (𝑤 = (1st𝑦) → (𝑣 <R 𝑤𝑣 <R (1st𝑦)))
4443notbid 318 . . . . . . . . . . 11 (𝑤 = (1st𝑦) → (¬ 𝑣 <R 𝑤 ↔ ¬ 𝑣 <R (1st𝑦)))
4544rspccv 3598 . . . . . . . . . 10 (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ((1st𝑦) ∈ (1st𝐴) → ¬ 𝑣 <R (1st𝑦)))
4635, 45syl5com 31 . . . . . . . . 9 (𝑦𝐴 → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
4746adantl 481 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
48 elreal2 11146 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↔ ((1st𝑦) ∈ R𝑦 = ⟨(1st𝑦), 0R⟩))
4948simprbi 496 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 = ⟨(1st𝑦), 0R⟩)
5049breq2d 5131 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦 ↔ ⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩))
51 ltresr 11154 . . . . . . . . . . 11 (⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩ ↔ 𝑣 <R (1st𝑦))
5250, 51bitrdi 287 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5312, 52syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5453notbid 318 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (¬ ⟨𝑣, 0R⟩ < 𝑦 ↔ ¬ 𝑣 <R (1st𝑦)))
5547, 54sylibrd 259 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ ⟨𝑣, 0R⟩ < 𝑦))
5655ralrimdva 3140 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
5756ad2antrr 726 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
5849breq1d 5129 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ ⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩))
59 ltresr 11154 . . . . . . . . . . . . . 14 (⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣)
6058, 59bitrdi 287 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣))
6148simplbi 497 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (1st𝑦) ∈ R)
62 breq1 5122 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (𝑤 <R 𝑣 ↔ (1st𝑦) <R 𝑣))
63 breq1 5122 . . . . . . . . . . . . . . . . . 18 (𝑤 = (1st𝑦) → (𝑤 <R 𝑢 ↔ (1st𝑦) <R 𝑢))
6463rexbidv 3164 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢 ↔ ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢))
6562, 64imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑤 = (1st𝑦) → ((𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) ↔ ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6665rspccv 3598 . . . . . . . . . . . . . . 15 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ((1st𝑦) ∈ R → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6761, 66syl5 34 . . . . . . . . . . . . . 14 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6867com3l 89 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6960, 68sylbid 240 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7069adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
71 fvelimab 6951 . . . . . . . . . . . . . . . 16 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢))
727, 8, 71mp2an 692 . . . . . . . . . . . . . . 15 (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢)
73 ssel2 3953 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
74 ltresr2 11155 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
7573, 74sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
76 breq2 5123 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑧) = 𝑢 → ((1st𝑦) <R (1st𝑧) ↔ (1st𝑦) <R 𝑢))
7775, 76sylan9bb 509 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) ∧ (1st𝑧) = 𝑢) → (𝑦 < 𝑧 ↔ (1st𝑦) <R 𝑢))
7877exbiri 810 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧)))
7978expr 456 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧))))
8079com4r 94 . . . . . . . . . . . . . . . . 17 ((1st𝑦) <R 𝑢 → ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧))))
8180imp 406 . . . . . . . . . . . . . . . 16 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧)))
8281reximdvai 3151 . . . . . . . . . . . . . . 15 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (∃𝑧𝐴 (1st𝑧) = 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8372, 82biimtrid 242 . . . . . . . . . . . . . 14 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧))
8483expcom 413 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((1st𝑦) <R 𝑢 → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧)))
8584com23 86 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑢 ∈ (1st𝐴) → ((1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧)))
8685rexlimdv 3139 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8770, 86syl6d 75 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑧𝐴 𝑦 < 𝑧)))
8887com23 86 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
8988ex 412 . . . . . . . 8 (𝑦 ∈ ℝ → (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9089com3l 89 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9190ad2antrr 726 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9291ralrimdv 3138 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
93 opelreal 11144 . . . . . . . 8 (⟨𝑣, 0R⟩ ∈ ℝ ↔ 𝑣R)
9493biimpri 228 . . . . . . 7 (𝑣R → ⟨𝑣, 0R⟩ ∈ ℝ)
9594adantl 481 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ⟨𝑣, 0R⟩ ∈ ℝ)
96 breq1 5122 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑥 < 𝑦 ↔ ⟨𝑣, 0R⟩ < 𝑦))
9796notbid 318 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → (¬ 𝑥 < 𝑦 ↔ ¬ ⟨𝑣, 0R⟩ < 𝑦))
9897ralbidv 3163 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
99 breq2 5123 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑦 < 𝑥𝑦 <𝑣, 0R⟩))
10099imbi1d 341 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
101100ralbidv 3163 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
10298, 101anbi12d 632 . . . . . . . 8 (𝑥 = ⟨𝑣, 0R⟩ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
103102rspcev 3601 . . . . . . 7 ((⟨𝑣, 0R⟩ ∈ ℝ ∧ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
104103ex 412 . . . . . 6 (⟨𝑣, 0R⟩ ∈ ℝ → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10595, 104syl 17 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10657, 92, 105syl2and 608 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
107106rexlimdva 3141 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10832, 42, 1073syld 60 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
1091083impia 1117 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308  cop 4607   class class class wbr 5119  cima 5657   Fn wfn 6526  wf 6527  ontowfo 6529  cfv 6531  1st c1st 7986  Rcnr 10879  0Rc0r 10880   <R cltr 10885  cr 11128   < cltrr 11133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-ni 10886  df-pli 10887  df-mi 10888  df-lti 10889  df-plpq 10922  df-mpq 10923  df-ltpq 10924  df-enq 10925  df-nq 10926  df-erq 10927  df-plq 10928  df-mq 10929  df-1nq 10930  df-rq 10931  df-ltnq 10932  df-np 10995  df-1p 10996  df-plp 10997  df-mp 10998  df-ltp 10999  df-enr 11069  df-nr 11070  df-plr 11071  df-mr 11072  df-ltr 11073  df-0r 11074  df-1r 11075  df-m1r 11076  df-r 11139  df-lt 11142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator