MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Structured version   Visualization version   GIF version

Theorem axpre-sup 11166
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11291. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11190. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
Distinct variable group:   π‘₯,𝑦,𝑧,𝐴

Proof of Theorem axpre-sup
Dummy variables 𝑀 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 11129 . . . . . . 7 (π‘₯ ∈ ℝ ↔ ((1st β€˜π‘₯) ∈ R ∧ π‘₯ = ⟨(1st β€˜π‘₯), 0R⟩))
21simplbi 498 . . . . . 6 (π‘₯ ∈ ℝ β†’ (1st β€˜π‘₯) ∈ R)
32adantl 482 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ π‘₯ ∈ ℝ) β†’ (1st β€˜π‘₯) ∈ R)
4 fo1st 7997 . . . . . . . . . . . 12 1st :V–ontoβ†’V
5 fof 6805 . . . . . . . . . . . 12 (1st :V–ontoβ†’V β†’ 1st :V⟢V)
6 ffn 6717 . . . . . . . . . . . 12 (1st :V⟢V β†’ 1st Fn V)
74, 5, 6mp2b 10 . . . . . . . . . . 11 1st Fn V
8 ssv 4006 . . . . . . . . . . 11 𝐴 βŠ† V
9 fvelimab 6964 . . . . . . . . . . 11 ((1st Fn V ∧ 𝐴 βŠ† V) β†’ (𝑀 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀))
107, 8, 9mp2an 690 . . . . . . . . . 10 (𝑀 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀)
11 r19.29 3114 . . . . . . . . . . . 12 ((βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀) β†’ βˆƒπ‘¦ ∈ 𝐴 (𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀))
12 ssel2 3977 . . . . . . . . . . . . . . . . 17 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ 𝑦 ∈ ℝ)
13 ltresr2 11138 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ π‘₯ ∈ ℝ) β†’ (𝑦 <ℝ π‘₯ ↔ (1st β€˜π‘¦) <R (1st β€˜π‘₯)))
14 breq1 5151 . . . . . . . . . . . . . . . . . . . 20 ((1st β€˜π‘¦) = 𝑀 β†’ ((1st β€˜π‘¦) <R (1st β€˜π‘₯) ↔ 𝑀 <R (1st β€˜π‘₯)))
1513, 14sylan9bb 510 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ π‘₯ ∈ ℝ) ∧ (1st β€˜π‘¦) = 𝑀) β†’ (𝑦 <ℝ π‘₯ ↔ 𝑀 <R (1st β€˜π‘₯)))
1615biimpd 228 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ π‘₯ ∈ ℝ) ∧ (1st β€˜π‘¦) = 𝑀) β†’ (𝑦 <ℝ π‘₯ β†’ 𝑀 <R (1st β€˜π‘₯)))
1716exp31 420 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ β†’ (π‘₯ ∈ ℝ β†’ ((1st β€˜π‘¦) = 𝑀 β†’ (𝑦 <ℝ π‘₯ β†’ 𝑀 <R (1st β€˜π‘₯)))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ ∈ ℝ β†’ ((1st β€˜π‘¦) = 𝑀 β†’ (𝑦 <ℝ π‘₯ β†’ 𝑀 <R (1st β€˜π‘₯)))))
1918imp4b 422 . . . . . . . . . . . . . . 15 (((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) ∧ π‘₯ ∈ ℝ) β†’ (((1st β€˜π‘¦) = 𝑀 ∧ 𝑦 <ℝ π‘₯) β†’ 𝑀 <R (1st β€˜π‘₯)))
2019ancomsd 466 . . . . . . . . . . . . . 14 (((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) ∧ π‘₯ ∈ ℝ) β†’ ((𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2120an32s 650 . . . . . . . . . . . . 13 (((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) ∧ 𝑦 ∈ 𝐴) β†’ ((𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2221rexlimdva 3155 . . . . . . . . . . . 12 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ (βˆƒπ‘¦ ∈ 𝐴 (𝑦 <ℝ π‘₯ ∧ (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2311, 22syl5 34 . . . . . . . . . . 11 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ ((βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀) β†’ 𝑀 <R (1st β€˜π‘₯)))
2423expd 416 . . . . . . . . . 10 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ (βˆƒπ‘¦ ∈ 𝐴 (1st β€˜π‘¦) = 𝑀 β†’ 𝑀 <R (1st β€˜π‘₯))))
2510, 24syl7bi 254 . . . . . . . . 9 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ (𝑀 ∈ (1st β€œ 𝐴) β†’ 𝑀 <R (1st β€˜π‘₯))))
2625impr 455 . . . . . . . 8 ((𝐴 βŠ† ℝ ∧ (π‘₯ ∈ ℝ ∧ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)) β†’ (𝑀 ∈ (1st β€œ 𝐴) β†’ 𝑀 <R (1st β€˜π‘₯)))
2726adantlr 713 . . . . . . 7 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ (π‘₯ ∈ ℝ ∧ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)) β†’ (𝑀 ∈ (1st β€œ 𝐴) β†’ 𝑀 <R (1st β€˜π‘₯)))
2827ralrimiv 3145 . . . . . 6 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ (π‘₯ ∈ ℝ ∧ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)) β†’ βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R (1st β€˜π‘₯))
2928expr 457 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R (1st β€˜π‘₯)))
30 brralrspcev 5208 . . . . 5 (((1st β€˜π‘₯) ∈ R ∧ βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R (1st β€˜π‘₯)) β†’ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣)
313, 29, 30syl6an 682 . . . 4 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣))
3231rexlimdva 3155 . . 3 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣))
33 n0 4346 . . . . . 6 (𝐴 β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ 𝐴)
34 fnfvima 7237 . . . . . . . . 9 ((1st Fn V ∧ 𝐴 βŠ† V ∧ 𝑦 ∈ 𝐴) β†’ (1st β€˜π‘¦) ∈ (1st β€œ 𝐴))
357, 8, 34mp3an12 1451 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (1st β€˜π‘¦) ∈ (1st β€œ 𝐴))
3635ne0d 4335 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ (1st β€œ 𝐴) β‰  βˆ…)
3736exlimiv 1933 . . . . . 6 (βˆƒπ‘¦ 𝑦 ∈ 𝐴 β†’ (1st β€œ 𝐴) β‰  βˆ…)
3833, 37sylbi 216 . . . . 5 (𝐴 β‰  βˆ… β†’ (1st β€œ 𝐴) β‰  βˆ…)
39 supsr 11109 . . . . . 6 (((1st β€œ 𝐴) β‰  βˆ… ∧ βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣) β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒)))
4039ex 413 . . . . 5 ((1st β€œ 𝐴) β‰  βˆ… β†’ (βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣 β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒))))
4138, 40syl 17 . . . 4 (𝐴 β‰  βˆ… β†’ (βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣 β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒))))
4241adantl 482 . . 3 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘£ ∈ R βˆ€π‘€ ∈ (1st β€œ 𝐴)𝑀 <R 𝑣 β†’ βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒))))
43 breq2 5152 . . . . . . . . . . . 12 (𝑀 = (1st β€˜π‘¦) β†’ (𝑣 <R 𝑀 ↔ 𝑣 <R (1st β€˜π‘¦)))
4443notbid 317 . . . . . . . . . . 11 (𝑀 = (1st β€˜π‘¦) β†’ (Β¬ 𝑣 <R 𝑀 ↔ Β¬ 𝑣 <R (1st β€˜π‘¦)))
4544rspccv 3609 . . . . . . . . . 10 (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ ((1st β€˜π‘¦) ∈ (1st β€œ 𝐴) β†’ Β¬ 𝑣 <R (1st β€˜π‘¦)))
4635, 45syl5com 31 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ Β¬ 𝑣 <R (1st β€˜π‘¦)))
4746adantl 482 . . . . . . . 8 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ Β¬ 𝑣 <R (1st β€˜π‘¦)))
48 elreal2 11129 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↔ ((1st β€˜π‘¦) ∈ R ∧ 𝑦 = ⟨(1st β€˜π‘¦), 0R⟩))
4948simprbi 497 . . . . . . . . . . . 12 (𝑦 ∈ ℝ β†’ 𝑦 = ⟨(1st β€˜π‘¦), 0R⟩)
5049breq2d 5160 . . . . . . . . . . 11 (𝑦 ∈ ℝ β†’ (βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ βŸ¨π‘£, 0R⟩ <ℝ ⟨(1st β€˜π‘¦), 0R⟩))
51 ltresr 11137 . . . . . . . . . . 11 (βŸ¨π‘£, 0R⟩ <ℝ ⟨(1st β€˜π‘¦), 0R⟩ ↔ 𝑣 <R (1st β€˜π‘¦))
5250, 51bitrdi 286 . . . . . . . . . 10 (𝑦 ∈ ℝ β†’ (βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ 𝑣 <R (1st β€˜π‘¦)))
5312, 52syl 17 . . . . . . . . 9 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ 𝑣 <R (1st β€˜π‘¦)))
5453notbid 317 . . . . . . . 8 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ↔ Β¬ 𝑣 <R (1st β€˜π‘¦)))
5547, 54sylibrd 258 . . . . . . 7 ((𝐴 βŠ† ℝ ∧ 𝑦 ∈ 𝐴) β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
5655ralrimdva 3154 . . . . . 6 (𝐴 βŠ† ℝ β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
5756ad2antrr 724 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
5849breq1d 5158 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ ↔ ⟨(1st β€˜π‘¦), 0R⟩ <ℝ βŸ¨π‘£, 0R⟩))
59 ltresr 11137 . . . . . . . . . . . . . 14 (⟨(1st β€˜π‘¦), 0R⟩ <ℝ βŸ¨π‘£, 0R⟩ ↔ (1st β€˜π‘¦) <R 𝑣)
6058, 59bitrdi 286 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ ↔ (1st β€˜π‘¦) <R 𝑣))
6148simplbi 498 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ β†’ (1st β€˜π‘¦) ∈ R)
62 breq1 5151 . . . . . . . . . . . . . . . . 17 (𝑀 = (1st β€˜π‘¦) β†’ (𝑀 <R 𝑣 ↔ (1st β€˜π‘¦) <R 𝑣))
63 breq1 5151 . . . . . . . . . . . . . . . . . 18 (𝑀 = (1st β€˜π‘¦) β†’ (𝑀 <R 𝑒 ↔ (1st β€˜π‘¦) <R 𝑒))
6463rexbidv 3178 . . . . . . . . . . . . . . . . 17 (𝑀 = (1st β€˜π‘¦) β†’ (βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒 ↔ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒))
6562, 64imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑀 = (1st β€˜π‘¦) β†’ ((𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) ↔ ((1st β€˜π‘¦) <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6665rspccv 3609 . . . . . . . . . . . . . . 15 (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ ((1st β€˜π‘¦) ∈ R β†’ ((1st β€˜π‘¦) <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6761, 66syl5 34 . . . . . . . . . . . . . 14 (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 ∈ ℝ β†’ ((1st β€˜π‘¦) <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6867com3l 89 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ β†’ ((1st β€˜π‘¦) <R 𝑣 β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
6960, 68sylbid 239 . . . . . . . . . . . 12 (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
7069adantr 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒)))
71 fvelimab 6964 . . . . . . . . . . . . . . . 16 ((1st Fn V ∧ 𝐴 βŠ† V) β†’ (𝑒 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘§ ∈ 𝐴 (1st β€˜π‘§) = 𝑒))
727, 8, 71mp2an 690 . . . . . . . . . . . . . . 15 (𝑒 ∈ (1st β€œ 𝐴) ↔ βˆƒπ‘§ ∈ 𝐴 (1st β€˜π‘§) = 𝑒)
73 ssel2 3977 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 ∈ ℝ)
74 ltresr2 11138 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) β†’ (𝑦 <ℝ 𝑧 ↔ (1st β€˜π‘¦) <R (1st β€˜π‘§)))
7573, 74sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴)) β†’ (𝑦 <ℝ 𝑧 ↔ (1st β€˜π‘¦) <R (1st β€˜π‘§)))
76 breq2 5152 . . . . . . . . . . . . . . . . . . . . 21 ((1st β€˜π‘§) = 𝑒 β†’ ((1st β€˜π‘¦) <R (1st β€˜π‘§) ↔ (1st β€˜π‘¦) <R 𝑒))
7775, 76sylan9bb 510 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ (𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴)) ∧ (1st β€˜π‘§) = 𝑒) β†’ (𝑦 <ℝ 𝑧 ↔ (1st β€˜π‘¦) <R 𝑒))
7877exbiri 809 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ (𝐴 βŠ† ℝ ∧ 𝑧 ∈ 𝐴)) β†’ ((1st β€˜π‘§) = 𝑒 β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ 𝑦 <ℝ 𝑧)))
7978expr 457 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑧 ∈ 𝐴 β†’ ((1st β€˜π‘§) = 𝑒 β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ 𝑦 <ℝ 𝑧))))
8079com4r 94 . . . . . . . . . . . . . . . . 17 ((1st β€˜π‘¦) <R 𝑒 β†’ ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑧 ∈ 𝐴 β†’ ((1st β€˜π‘§) = 𝑒 β†’ 𝑦 <ℝ 𝑧))))
8180imp 407 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘¦) <R 𝑒 ∧ (𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ)) β†’ (𝑧 ∈ 𝐴 β†’ ((1st β€˜π‘§) = 𝑒 β†’ 𝑦 <ℝ 𝑧)))
8281reximdvai 3165 . . . . . . . . . . . . . . 15 (((1st β€˜π‘¦) <R 𝑒 ∧ (𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ)) β†’ (βˆƒπ‘§ ∈ 𝐴 (1st β€˜π‘§) = 𝑒 β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))
8372, 82biimtrid 241 . . . . . . . . . . . . . 14 (((1st β€˜π‘¦) <R 𝑒 ∧ (𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ)) β†’ (𝑒 ∈ (1st β€œ 𝐴) β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))
8483expcom 414 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ (𝑒 ∈ (1st β€œ 𝐴) β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8584com23 86 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑒 ∈ (1st β€œ 𝐴) β†’ ((1st β€˜π‘¦) <R 𝑒 β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8685rexlimdv 3153 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (βˆƒπ‘’ ∈ (1st β€œ 𝐴)(1st β€˜π‘¦) <R 𝑒 β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))
8770, 86syl6d 75 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8887com23 86 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝐴 βŠ† ℝ) β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
8988ex 413 . . . . . . . 8 (𝑦 ∈ ℝ β†’ (𝐴 βŠ† ℝ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
9089com3l 89 . . . . . . 7 (𝐴 βŠ† ℝ β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
9190ad2antrr 724 . . . . . 6 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ (𝑦 ∈ ℝ β†’ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
9291ralrimdv 3152 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ (βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒) β†’ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
93 opelreal 11127 . . . . . . . 8 (βŸ¨π‘£, 0R⟩ ∈ ℝ ↔ 𝑣 ∈ R)
9493biimpri 227 . . . . . . 7 (𝑣 ∈ R β†’ βŸ¨π‘£, 0R⟩ ∈ ℝ)
9594adantl 482 . . . . . 6 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ βŸ¨π‘£, 0R⟩ ∈ ℝ)
96 breq1 5151 . . . . . . . . . . 11 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (π‘₯ <ℝ 𝑦 ↔ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
9796notbid 317 . . . . . . . . . 10 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (Β¬ π‘₯ <ℝ 𝑦 ↔ Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
9897ralbidv 3177 . . . . . . . . 9 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ↔ βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦))
99 breq2 5152 . . . . . . . . . . 11 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (𝑦 <ℝ π‘₯ ↔ 𝑦 <ℝ βŸ¨π‘£, 0R⟩))
10099imbi1d 341 . . . . . . . . . 10 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ ((𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
101100ralbidv 3177 . . . . . . . . 9 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ (βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
10298, 101anbi12d 631 . . . . . . . 8 (π‘₯ = βŸ¨π‘£, 0R⟩ β†’ ((βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ (βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
103102rspcev 3612 . . . . . . 7 ((βŸ¨π‘£, 0R⟩ ∈ ℝ ∧ (βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
104103ex 413 . . . . . 6 (βŸ¨π‘£, 0R⟩ ∈ ℝ β†’ ((βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
10595, 104syl 17 . . . . 5 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ ((βˆ€π‘¦ ∈ 𝐴 Β¬ βŸ¨π‘£, 0R⟩ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ βŸ¨π‘£, 0R⟩ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
10657, 92, 105syl2and 608 . . . 4 (((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) ∧ 𝑣 ∈ R) β†’ ((βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
107106rexlimdva 3155 . . 3 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘£ ∈ R (βˆ€π‘€ ∈ (1st β€œ 𝐴) Β¬ 𝑣 <R 𝑀 ∧ βˆ€π‘€ ∈ R (𝑀 <R 𝑣 β†’ βˆƒπ‘’ ∈ (1st β€œ 𝐴)𝑀 <R 𝑒)) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
10832, 42, 1073syld 60 . 2 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧))))
1091083impia 1117 1 ((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3948  βˆ…c0 4322  βŸ¨cop 4634   class class class wbr 5148   β€œ cima 5679   Fn wfn 6538  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€˜cfv 6543  1st c1st 7975  Rcnr 10862  0Rc0r 10863   <R cltr 10868  β„cr 11111   <ℝ cltrr 11116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-omul 8473  df-er 8705  df-ec 8707  df-qs 8711  df-ni 10869  df-pli 10870  df-mi 10871  df-lti 10872  df-plpq 10905  df-mpq 10906  df-ltpq 10907  df-enq 10908  df-nq 10909  df-erq 10910  df-plq 10911  df-mq 10912  df-1nq 10913  df-rq 10914  df-ltnq 10915  df-np 10978  df-1p 10979  df-plp 10980  df-mp 10981  df-ltp 10982  df-enr 11052  df-nr 11053  df-plr 11054  df-mr 11055  df-ltr 11056  df-0r 11057  df-1r 11058  df-m1r 11059  df-r 11122  df-lt 11125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator