MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-addf Structured version   Visualization version   GIF version

Axiom ax-addf 11195
Description: Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first-order or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 11198 should be used. Note that uses of ax-addf 11195 can be eliminated by using the defined operation (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) in place of +, from which this axiom (with the defined operation in place of +) follows as a theorem.

This axiom is justified by Theorem axaddf 11146. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

Assertion
Ref Expression
ax-addf + :(β„‚ Γ— β„‚)βŸΆβ„‚

Detailed syntax breakdown of Axiom ax-addf
StepHypRef Expression
1 cc 11114 . . 3 class β„‚
21, 1cxp 5674 . 2 class (β„‚ Γ— β„‚)
3 caddc 11119 . 2 class +
42, 1, 3wf 6539 1 wff + :(β„‚ Γ— β„‚)βŸΆβ„‚
Colors of variables: wff setvar class
This axiom is referenced by:  addex  12979  rlimaddOLD  15595  cnfldplusf  21262  addcn  24702  itg1addlem4  25549  itg1addlem4OLD  25550  cnaddabloOLD  30269  cnidOLD  30270  cncvcOLD  30271  cnnv  30365  cnnvba  30367  cncph  30507  raddcn  33375  gg-dfcnfld  35637  addcomgi  43681
  Copyright terms: Public domain W3C validator