MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-addf Structured version   Visualization version   GIF version

Axiom ax-addf 11213
Description: Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first-order or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 11216 should be used. Note that uses of ax-addf 11213 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) in place of +, from which this axiom (with the defined operation in place of +) follows as a theorem.

This axiom is justified by Theorem axaddf 11164. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

Assertion
Ref Expression
ax-addf + :(ℂ × ℂ)⟶ℂ

Detailed syntax breakdown of Axiom ax-addf
StepHypRef Expression
1 cc 11132 . . 3 class
21, 1cxp 5657 . 2 class (ℂ × ℂ)
3 caddc 11137 . 2 class +
42, 1, 3wf 6532 1 wff + :(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
This axiom is referenced by:  addex  13010  cnfldadd  21326  dfcnfldOLD  21336  cnfldplusf  21364  addcn  24810  itg1addlem4  25657  cnaddabloOLD  30567  cnidOLD  30568  cncvcOLD  30569  cnnv  30663  cnnvba  30665  cncph  30805  raddcn  33965  addcomgi  44455
  Copyright terms: Public domain W3C validator