Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-riotaBAD Structured version   Visualization version   GIF version

Axiom ax-riotaBAD 37811
Description: Define restricted description binder. In case it doesn't exist, we return a set which is not a member of the domain of discourse 𝐴. See also comments for df-iota 6492. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) WARNING: THIS "AXIOM", WHICH IS THE OLD df-riota 7361, CONFLICTS WITH (THE NEW) df-riota 7361 AND MAKES THE SYSTEM IN set.mm INCONSISTENT. IT IS TEMPORARY AND WILL BE DELETED AFTER ALL USES ARE ELIMINATED.
Assertion
Ref Expression
ax-riotaBAD (β„©π‘₯ ∈ 𝐴 πœ‘) = if(βˆƒ!π‘₯ ∈ 𝐴 πœ‘, (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘)), (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴}))

Detailed syntax breakdown of Axiom ax-riotaBAD
StepHypRef Expression
1 wph . . 3 wff πœ‘
2 vx . . 3 setvar π‘₯
3 cA . . 3 class 𝐴
41, 2, 3crio 7360 . 2 class (β„©π‘₯ ∈ 𝐴 πœ‘)
51, 2, 3wreu 3374 . . 3 wff βˆƒ!π‘₯ ∈ 𝐴 πœ‘
62cv 1540 . . . . . 6 class π‘₯
76, 3wcel 2106 . . . . 5 wff π‘₯ ∈ 𝐴
87, 1wa 396 . . . 4 wff (π‘₯ ∈ 𝐴 ∧ πœ‘)
98, 2cio 6490 . . 3 class (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
107, 2cab 2709 . . . 4 class {π‘₯ ∣ π‘₯ ∈ 𝐴}
11 cund 8253 . . . 4 class Undef
1210, 11cfv 6540 . . 3 class (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴})
135, 9, 12cif 4527 . 2 class if(βˆƒ!π‘₯ ∈ 𝐴 πœ‘, (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘)), (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴}))
144, 13wceq 1541 1 wff (β„©π‘₯ ∈ 𝐴 πœ‘) = if(βˆƒ!π‘₯ ∈ 𝐴 πœ‘, (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘)), (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴}))
Colors of variables: wff setvar class
This axiom is referenced by:  riotaclbgBAD  37812
  Copyright terms: Public domain W3C validator