Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumshftd Structured version   Visualization version   GIF version

Theorem fsumshftd 38970
Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15796. The proof demonstrates how this can be derived starting from from fsumshft 15796. (Contributed by NM, 1-Nov-2019.)
Hypotheses
Ref Expression
fsumshftd.1 (𝜑𝐾 ∈ ℤ)
fsumshftd.2 (𝜑𝑀 ∈ ℤ)
fsumshftd.3 (𝜑𝑁 ∈ ℤ)
fsumshftd.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumshftd.5 ((𝜑𝑗 = (𝑘𝐾)) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumshftd (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumshftd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3888 . . 3 (𝑗 = 𝑤𝐴 = 𝑤 / 𝑗𝐴)
2 nfcv 2898 . . 3 𝑤𝐴
3 nfcsb1v 3898 . . 3 𝑗𝑤 / 𝑗𝐴
41, 2, 3cbvsum 15711 . 2 Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑤 ∈ (𝑀...𝑁)𝑤 / 𝑗𝐴
5 fsumshftd.1 . . . 4 (𝜑𝐾 ∈ ℤ)
6 fsumshftd.2 . . . 4 (𝜑𝑀 ∈ ℤ)
7 fsumshftd.3 . . . 4 (𝜑𝑁 ∈ ℤ)
8 nfv 1914 . . . . . 6 𝑗(𝜑𝑤 ∈ (𝑀...𝑁))
93nfel1 2915 . . . . . 6 𝑗𝑤 / 𝑗𝐴 ∈ ℂ
108, 9nfim 1896 . . . . 5 𝑗((𝜑𝑤 ∈ (𝑀...𝑁)) → 𝑤 / 𝑗𝐴 ∈ ℂ)
11 eleq1w 2817 . . . . . . 7 (𝑗 = 𝑤 → (𝑗 ∈ (𝑀...𝑁) ↔ 𝑤 ∈ (𝑀...𝑁)))
1211anbi2d 630 . . . . . 6 (𝑗 = 𝑤 → ((𝜑𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑𝑤 ∈ (𝑀...𝑁))))
131eleq1d 2819 . . . . . 6 (𝑗 = 𝑤 → (𝐴 ∈ ℂ ↔ 𝑤 / 𝑗𝐴 ∈ ℂ))
1412, 13imbi12d 344 . . . . 5 (𝑗 = 𝑤 → (((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑤 ∈ (𝑀...𝑁)) → 𝑤 / 𝑗𝐴 ∈ ℂ)))
15 fsumshftd.4 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1610, 14, 15chvarfv 2240 . . . 4 ((𝜑𝑤 ∈ (𝑀...𝑁)) → 𝑤 / 𝑗𝐴 ∈ ℂ)
17 csbeq1 3877 . . . 4 (𝑤 = (𝑘𝐾) → 𝑤 / 𝑗𝐴 = (𝑘𝐾) / 𝑗𝐴)
185, 6, 7, 16, 17fsumshft 15796 . . 3 (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)𝑤 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))(𝑘𝐾) / 𝑗𝐴)
19 ovexd 7440 . . . . 5 (𝜑 → (𝑘𝐾) ∈ V)
20 fsumshftd.5 . . . . 5 ((𝜑𝑗 = (𝑘𝐾)) → 𝐴 = 𝐵)
2119, 20csbied 3910 . . . 4 (𝜑(𝑘𝐾) / 𝑗𝐴 = 𝐵)
2221sumeq2sdv 15719 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))(𝑘𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
2318, 22eqtrd 2770 . 2 (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)𝑤 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
244, 23eqtrid 2782 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  (class class class)co 7405  cc 11127   + caddc 11132  cmin 11466  cz 12588  ...cfz 13524  Σcsu 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator