![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumshftd | Structured version Visualization version GIF version |
Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15756. The proof demonstrates how this can be derived starting from from fsumshft 15756. (Contributed by NM, 1-Nov-2019.) |
Ref | Expression |
---|---|
fsumshftd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
fsumshftd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fsumshftd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumshftd.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumshftd.5 | ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsumshftd | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
2 | nfcsb1v 3909 | . . 3 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 | |
3 | csbeq1a 3898 | . . 3 ⊢ (𝑗 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑗⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15673 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 |
5 | fsumshftd.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
6 | fsumshftd.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | fsumshftd.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
8 | nfv 1909 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) | |
9 | 2 | nfel1 2909 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ |
10 | 8, 9 | nfim 1891 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
11 | eleq1w 2808 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ (𝑀...𝑁) ↔ 𝑤 ∈ (𝑀...𝑁))) | |
12 | 11 | anbi2d 628 | . . . . . 6 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)))) |
13 | 3 | eleq1d 2810 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (𝐴 ∈ ℂ ↔ ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ)) |
14 | 12, 13 | imbi12d 343 | . . . . 5 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ))) |
15 | fsumshftd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
16 | 10, 14, 15 | chvarfv 2228 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
17 | csbeq1 3887 | . . . 4 ⊢ (𝑤 = (𝑘 − 𝐾) → ⦋𝑤 / 𝑗⦌𝐴 = ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) | |
18 | 5, 6, 7, 16, 17 | fsumshft 15756 | . . 3 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) |
19 | ovexd 7449 | . . . . 5 ⊢ (𝜑 → (𝑘 − 𝐾) ∈ V) | |
20 | fsumshftd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) | |
21 | 19, 20 | csbied 3922 | . . . 4 ⊢ (𝜑 → ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = 𝐵) |
22 | 21 | sumeq2sdv 15680 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
23 | 18, 22 | eqtrd 2765 | . 2 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
24 | 4, 23 | eqtrid 2777 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⦋csb 3884 (class class class)co 7414 ℂcc 11134 + caddc 11139 − cmin 11472 ℤcz 12586 ...cfz 13514 Σcsu 15662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-fz 13515 df-fzo 13658 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-sum 15663 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |