| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumshftd | Structured version Visualization version GIF version | ||
| Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15816. The proof demonstrates how this can be derived starting from from fsumshft 15816. (Contributed by NM, 1-Nov-2019.) |
| Ref | Expression |
|---|---|
| fsumshftd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| fsumshftd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fsumshftd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumshftd.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumshftd.5 | ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fsumshftd | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3913 | . . 3 ⊢ (𝑗 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑗⦌𝐴) | |
| 2 | nfcv 2905 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
| 3 | nfcsb1v 3923 | . . 3 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 | |
| 4 | 1, 2, 3 | cbvsum 15731 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 |
| 5 | fsumshftd.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | fsumshftd.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | fsumshftd.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 8 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) | |
| 9 | 3 | nfel1 2922 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ |
| 10 | 8, 9 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
| 11 | eleq1w 2824 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ (𝑀...𝑁) ↔ 𝑤 ∈ (𝑀...𝑁))) | |
| 12 | 11 | anbi2d 630 | . . . . . 6 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)))) |
| 13 | 1 | eleq1d 2826 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (𝐴 ∈ ℂ ↔ ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ)) |
| 14 | 12, 13 | imbi12d 344 | . . . . 5 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ))) |
| 15 | fsumshftd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 16 | 10, 14, 15 | chvarfv 2240 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
| 17 | csbeq1 3902 | . . . 4 ⊢ (𝑤 = (𝑘 − 𝐾) → ⦋𝑤 / 𝑗⦌𝐴 = ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) | |
| 18 | 5, 6, 7, 16, 17 | fsumshft 15816 | . . 3 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) |
| 19 | ovexd 7466 | . . . . 5 ⊢ (𝜑 → (𝑘 − 𝐾) ∈ V) | |
| 20 | fsumshftd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) | |
| 21 | 19, 20 | csbied 3935 | . . . 4 ⊢ (𝜑 → ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 22 | 21 | sumeq2sdv 15739 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| 23 | 18, 22 | eqtrd 2777 | . 2 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| 24 | 4, 23 | eqtrid 2789 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⦋csb 3899 (class class class)co 7431 ℂcc 11153 + caddc 11158 − cmin 11492 ℤcz 12613 ...cfz 13547 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |