| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumshftd | Structured version Visualization version GIF version | ||
| Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15753. The proof demonstrates how this can be derived starting from from fsumshft 15753. (Contributed by NM, 1-Nov-2019.) |
| Ref | Expression |
|---|---|
| fsumshftd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| fsumshftd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fsumshftd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumshftd.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumshftd.5 | ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fsumshftd | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3879 | . . 3 ⊢ (𝑗 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑗⦌𝐴) | |
| 2 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
| 3 | nfcsb1v 3889 | . . 3 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 | |
| 4 | 1, 2, 3 | cbvsum 15668 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 |
| 5 | fsumshftd.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | fsumshftd.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | fsumshftd.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 8 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) | |
| 9 | 3 | nfel1 2909 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ |
| 10 | 8, 9 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
| 11 | eleq1w 2812 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ (𝑀...𝑁) ↔ 𝑤 ∈ (𝑀...𝑁))) | |
| 12 | 11 | anbi2d 630 | . . . . . 6 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)))) |
| 13 | 1 | eleq1d 2814 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (𝐴 ∈ ℂ ↔ ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ)) |
| 14 | 12, 13 | imbi12d 344 | . . . . 5 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ))) |
| 15 | fsumshftd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 16 | 10, 14, 15 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
| 17 | csbeq1 3868 | . . . 4 ⊢ (𝑤 = (𝑘 − 𝐾) → ⦋𝑤 / 𝑗⦌𝐴 = ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) | |
| 18 | 5, 6, 7, 16, 17 | fsumshft 15753 | . . 3 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) |
| 19 | ovexd 7425 | . . . . 5 ⊢ (𝜑 → (𝑘 − 𝐾) ∈ V) | |
| 20 | fsumshftd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) | |
| 21 | 19, 20 | csbied 3901 | . . . 4 ⊢ (𝜑 → ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 22 | 21 | sumeq2sdv 15676 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| 23 | 18, 22 | eqtrd 2765 | . 2 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| 24 | 4, 23 | eqtrid 2777 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⦋csb 3865 (class class class)co 7390 ℂcc 11073 + caddc 11078 − cmin 11412 ℤcz 12536 ...cfz 13475 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |