| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumshftd | Structured version Visualization version GIF version | ||
| Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15722. The proof demonstrates how this can be derived starting from from fsumshft 15722. (Contributed by NM, 1-Nov-2019.) |
| Ref | Expression |
|---|---|
| fsumshftd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| fsumshftd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fsumshftd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumshftd.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumshftd.5 | ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fsumshftd | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3873 | . . 3 ⊢ (𝑗 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑗⦌𝐴) | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
| 3 | nfcsb1v 3883 | . . 3 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 | |
| 4 | 1, 2, 3 | cbvsum 15637 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 |
| 5 | fsumshftd.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | fsumshftd.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | fsumshftd.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 8 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) | |
| 9 | 3 | nfel1 2908 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ |
| 10 | 8, 9 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
| 11 | eleq1w 2811 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ (𝑀...𝑁) ↔ 𝑤 ∈ (𝑀...𝑁))) | |
| 12 | 11 | anbi2d 630 | . . . . . 6 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)))) |
| 13 | 1 | eleq1d 2813 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (𝐴 ∈ ℂ ↔ ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ)) |
| 14 | 12, 13 | imbi12d 344 | . . . . 5 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ))) |
| 15 | fsumshftd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 16 | 10, 14, 15 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
| 17 | csbeq1 3862 | . . . 4 ⊢ (𝑤 = (𝑘 − 𝐾) → ⦋𝑤 / 𝑗⦌𝐴 = ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) | |
| 18 | 5, 6, 7, 16, 17 | fsumshft 15722 | . . 3 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) |
| 19 | ovexd 7404 | . . . . 5 ⊢ (𝜑 → (𝑘 − 𝐾) ∈ V) | |
| 20 | fsumshftd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) | |
| 21 | 19, 20 | csbied 3895 | . . . 4 ⊢ (𝜑 → ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = 𝐵) |
| 22 | 21 | sumeq2sdv 15645 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| 23 | 18, 22 | eqtrd 2764 | . 2 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| 24 | 4, 23 | eqtrid 2776 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⦋csb 3859 (class class class)co 7369 ℂcc 11042 + caddc 11047 − cmin 11381 ℤcz 12505 ...cfz 13444 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |