Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumshftd | Structured version Visualization version GIF version |
Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15183. The proof demonstrates how this can be derived starting from from fsumshft 15183. (Contributed by NM, 1-Nov-2019.) |
Ref | Expression |
---|---|
fsumshftd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
fsumshftd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fsumshftd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumshftd.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumshftd.5 | ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsumshftd | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
2 | nfcsb1v 3829 | . . 3 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 | |
3 | csbeq1a 3819 | . . 3 ⊢ (𝑗 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑗⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15102 | . 2 ⊢ Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 |
5 | fsumshftd.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
6 | fsumshftd.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | fsumshftd.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
8 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) | |
9 | 2 | nfel1 2935 | . . . . . 6 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ |
10 | 8, 9 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
11 | eleq1w 2834 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ (𝑀...𝑁) ↔ 𝑤 ∈ (𝑀...𝑁))) | |
12 | 11 | anbi2d 631 | . . . . . 6 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)))) |
13 | 3 | eleq1d 2836 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (𝐴 ∈ ℂ ↔ ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ)) |
14 | 12, 13 | imbi12d 348 | . . . . 5 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ))) |
15 | fsumshftd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
16 | 10, 14, 15 | chvarfv 2240 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ (𝑀...𝑁)) → ⦋𝑤 / 𝑗⦌𝐴 ∈ ℂ) |
17 | csbeq1 3808 | . . . 4 ⊢ (𝑤 = (𝑘 − 𝐾) → ⦋𝑤 / 𝑗⦌𝐴 = ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) | |
18 | 5, 6, 7, 16, 17 | fsumshft 15183 | . . 3 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴) |
19 | ovexd 7185 | . . . . 5 ⊢ (𝜑 → (𝑘 − 𝐾) ∈ V) | |
20 | fsumshftd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) | |
21 | 19, 20 | csbied 3841 | . . . 4 ⊢ (𝜑 → ⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = 𝐵) |
22 | 21 | sumeq2sdv 15109 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))⦋(𝑘 − 𝐾) / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
23 | 18, 22 | eqtrd 2793 | . 2 ⊢ (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)⦋𝑤 / 𝑗⦌𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
24 | 4, 23 | syl5eq 2805 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⦋csb 3805 (class class class)co 7150 ℂcc 10573 + caddc 10578 − cmin 10908 ℤcz 12020 ...cfz 12939 Σcsu 15090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-sum 15091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |