Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumshftd Structured version   Visualization version   GIF version

Theorem fsumshftd 38934
Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15813. The proof demonstrates how this can be derived starting from from fsumshft 15813. (Contributed by NM, 1-Nov-2019.)
Hypotheses
Ref Expression
fsumshftd.1 (𝜑𝐾 ∈ ℤ)
fsumshftd.2 (𝜑𝑀 ∈ ℤ)
fsumshftd.3 (𝜑𝑁 ∈ ℤ)
fsumshftd.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumshftd.5 ((𝜑𝑗 = (𝑘𝐾)) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumshftd (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumshftd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3922 . . 3 (𝑗 = 𝑤𝐴 = 𝑤 / 𝑗𝐴)
2 nfcv 2903 . . 3 𝑤𝐴
3 nfcsb1v 3933 . . 3 𝑗𝑤 / 𝑗𝐴
41, 2, 3cbvsum 15728 . 2 Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑤 ∈ (𝑀...𝑁)𝑤 / 𝑗𝐴
5 fsumshftd.1 . . . 4 (𝜑𝐾 ∈ ℤ)
6 fsumshftd.2 . . . 4 (𝜑𝑀 ∈ ℤ)
7 fsumshftd.3 . . . 4 (𝜑𝑁 ∈ ℤ)
8 nfv 1912 . . . . . 6 𝑗(𝜑𝑤 ∈ (𝑀...𝑁))
93nfel1 2920 . . . . . 6 𝑗𝑤 / 𝑗𝐴 ∈ ℂ
108, 9nfim 1894 . . . . 5 𝑗((𝜑𝑤 ∈ (𝑀...𝑁)) → 𝑤 / 𝑗𝐴 ∈ ℂ)
11 eleq1w 2822 . . . . . . 7 (𝑗 = 𝑤 → (𝑗 ∈ (𝑀...𝑁) ↔ 𝑤 ∈ (𝑀...𝑁)))
1211anbi2d 630 . . . . . 6 (𝑗 = 𝑤 → ((𝜑𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑𝑤 ∈ (𝑀...𝑁))))
131eleq1d 2824 . . . . . 6 (𝑗 = 𝑤 → (𝐴 ∈ ℂ ↔ 𝑤 / 𝑗𝐴 ∈ ℂ))
1412, 13imbi12d 344 . . . . 5 (𝑗 = 𝑤 → (((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑤 ∈ (𝑀...𝑁)) → 𝑤 / 𝑗𝐴 ∈ ℂ)))
15 fsumshftd.4 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1610, 14, 15chvarfv 2238 . . . 4 ((𝜑𝑤 ∈ (𝑀...𝑁)) → 𝑤 / 𝑗𝐴 ∈ ℂ)
17 csbeq1 3911 . . . 4 (𝑤 = (𝑘𝐾) → 𝑤 / 𝑗𝐴 = (𝑘𝐾) / 𝑗𝐴)
185, 6, 7, 16, 17fsumshft 15813 . . 3 (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)𝑤 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))(𝑘𝐾) / 𝑗𝐴)
19 ovexd 7466 . . . . 5 (𝜑 → (𝑘𝐾) ∈ V)
20 fsumshftd.5 . . . . 5 ((𝜑𝑗 = (𝑘𝐾)) → 𝐴 = 𝐵)
2119, 20csbied 3946 . . . 4 (𝜑(𝑘𝐾) / 𝑗𝐴 = 𝐵)
2221sumeq2sdv 15736 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))(𝑘𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
2318, 22eqtrd 2775 . 2 (𝜑 → Σ𝑤 ∈ (𝑀...𝑁)𝑤 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
244, 23eqtrid 2787 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  csb 3908  (class class class)co 7431  cc 11151   + caddc 11156  cmin 11490  cz 12611  ...cfz 13544  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator