Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaclbgBAD Structured version   Visualization version   GIF version

Theorem riotaclbgBAD 38914
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotaclbgBAD (𝐴𝑉 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem riotaclbgBAD
StepHypRef Expression
1 riotacl 7387 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
2 undefnel2 8284 . . . 4 (𝐴𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴)
3 iffalse 4514 . . . . . . 7 (¬ ∃!𝑥𝐴 𝜑 → if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴})) = (Undef‘{𝑥𝑥𝐴}))
4 ax-riotaBAD 38913 . . . . . . 7 (𝑥𝐴 𝜑) = if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴}))
5 abid1 2870 . . . . . . . 8 𝐴 = {𝑥𝑥𝐴}
65fveq2i 6889 . . . . . . 7 (Undef‘𝐴) = (Undef‘{𝑥𝑥𝐴})
73, 4, 63eqtr4g 2794 . . . . . 6 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = (Undef‘𝐴))
87eleq1d 2818 . . . . 5 (¬ ∃!𝑥𝐴 𝜑 → ((𝑥𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴))
98notbid 318 . . . 4 (¬ ∃!𝑥𝐴 𝜑 → (¬ (𝑥𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴))
102, 9syl5ibrcom 247 . . 3 (𝐴𝑉 → (¬ ∃!𝑥𝐴 𝜑 → ¬ (𝑥𝐴 𝜑) ∈ 𝐴))
1110con4d 115 . 2 (𝐴𝑉 → ((𝑥𝐴 𝜑) ∈ 𝐴 → ∃!𝑥𝐴 𝜑))
121, 11impbid2 226 1 (𝐴𝑉 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2107  {cab 2712  ∃!wreu 3361  ifcif 4505  cio 6492  cfv 6541  crio 7369  Undefcund 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-riota 7370  df-undef 8280
This theorem is referenced by:  riotaclbBAD  38915  riotasvd  38916
  Copyright terms: Public domain W3C validator