| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaclbgBAD | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotaclbgBAD | ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotacl 7387 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
| 2 | undefnel2 8284 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴) | |
| 3 | iffalse 4514 | . . . . . . 7 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
| 4 | ax-riotaBAD 38913 | . . . . . . 7 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
| 5 | abid1 2870 | . . . . . . . 8 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 6 | 5 | fveq2i 6889 | . . . . . . 7 ⊢ (Undef‘𝐴) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 7 | 3, 4, 6 | 3eqtr4g 2794 | . . . . . 6 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = (Undef‘𝐴)) |
| 8 | 7 | eleq1d 2818 | . . . . 5 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴)) |
| 9 | 8 | notbid 318 | . . . 4 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴)) |
| 10 | 2, 9 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
| 11 | 10 | con4d 115 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 → ∃!𝑥 ∈ 𝐴 𝜑)) |
| 12 | 1, 11 | impbid2 226 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 {cab 2712 ∃!wreu 3361 ifcif 4505 ℩cio 6492 ‘cfv 6541 ℩crio 7369 Undefcund 8279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-riotaBAD 38913 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-riota 7370 df-undef 8280 |
| This theorem is referenced by: riotaclbBAD 38915 riotasvd 38916 |
| Copyright terms: Public domain | W3C validator |