Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaclbgBAD Structured version   Visualization version   GIF version

Theorem riotaclbgBAD 39063
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotaclbgBAD (𝐴𝑉 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem riotaclbgBAD
StepHypRef Expression
1 riotacl 7320 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
2 undefnel2 8207 . . . 4 (𝐴𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴)
3 iffalse 4481 . . . . . . 7 (¬ ∃!𝑥𝐴 𝜑 → if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴})) = (Undef‘{𝑥𝑥𝐴}))
4 ax-riotaBAD 39062 . . . . . . 7 (𝑥𝐴 𝜑) = if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴}))
5 abid1 2867 . . . . . . . 8 𝐴 = {𝑥𝑥𝐴}
65fveq2i 6825 . . . . . . 7 (Undef‘𝐴) = (Undef‘{𝑥𝑥𝐴})
73, 4, 63eqtr4g 2791 . . . . . 6 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = (Undef‘𝐴))
87eleq1d 2816 . . . . 5 (¬ ∃!𝑥𝐴 𝜑 → ((𝑥𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴))
98notbid 318 . . . 4 (¬ ∃!𝑥𝐴 𝜑 → (¬ (𝑥𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴))
102, 9syl5ibrcom 247 . . 3 (𝐴𝑉 → (¬ ∃!𝑥𝐴 𝜑 → ¬ (𝑥𝐴 𝜑) ∈ 𝐴))
1110con4d 115 . 2 (𝐴𝑉 → ((𝑥𝐴 𝜑) ∈ 𝐴 → ∃!𝑥𝐴 𝜑))
121, 11impbid2 226 1 (𝐴𝑉 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  {cab 2709  ∃!wreu 3344  ifcif 4472  cio 6435  cfv 6481  crio 7302  Undefcund 8202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-undef 8203
This theorem is referenced by:  riotaclbBAD  39064  riotasvd  39065
  Copyright terms: Public domain W3C validator