![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaclbgBAD | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotaclbgBAD | ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotacl 7412 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
2 | undefnel2 8310 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴) | |
3 | iffalse 4543 | . . . . . . 7 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
4 | ax-riotaBAD 38949 | . . . . . . 7 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
5 | abid1 2878 | . . . . . . . 8 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
6 | 5 | fveq2i 6917 | . . . . . . 7 ⊢ (Undef‘𝐴) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴}) |
7 | 3, 4, 6 | 3eqtr4g 2802 | . . . . . 6 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = (Undef‘𝐴)) |
8 | 7 | eleq1d 2826 | . . . . 5 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴)) |
9 | 8 | notbid 318 | . . . 4 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴)) |
10 | 2, 9 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
11 | 10 | con4d 115 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 → ∃!𝑥 ∈ 𝐴 𝜑)) |
12 | 1, 11 | impbid2 226 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 {cab 2714 ∃!wreu 3378 ifcif 4534 ℩cio 6520 ‘cfv 6569 ℩crio 7394 Undefcund 8305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-riotaBAD 38949 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-riota 7395 df-undef 8306 |
This theorem is referenced by: riotaclbBAD 38951 riotasvd 38952 |
Copyright terms: Public domain | W3C validator |