Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaclbgBAD Structured version   Visualization version   GIF version

Theorem riotaclbgBAD 37819
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotaclbgBAD (𝐴 ∈ 𝑉 β†’ (βˆƒ!π‘₯ ∈ 𝐴 πœ‘ ↔ (β„©π‘₯ ∈ 𝐴 πœ‘) ∈ 𝐴))
Distinct variable group:   π‘₯,𝐴
Allowed substitution hints:   πœ‘(π‘₯)   𝑉(π‘₯)

Proof of Theorem riotaclbgBAD
StepHypRef Expression
1 riotacl 7382 . 2 (βˆƒ!π‘₯ ∈ 𝐴 πœ‘ β†’ (β„©π‘₯ ∈ 𝐴 πœ‘) ∈ 𝐴)
2 undefnel2 8261 . . . 4 (𝐴 ∈ 𝑉 β†’ Β¬ (Undefβ€˜π΄) ∈ 𝐴)
3 iffalse 4537 . . . . . . 7 (Β¬ βˆƒ!π‘₯ ∈ 𝐴 πœ‘ β†’ if(βˆƒ!π‘₯ ∈ 𝐴 πœ‘, (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘)), (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴})) = (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴}))
4 ax-riotaBAD 37818 . . . . . . 7 (β„©π‘₯ ∈ 𝐴 πœ‘) = if(βˆƒ!π‘₯ ∈ 𝐴 πœ‘, (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘)), (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴}))
5 abid1 2870 . . . . . . . 8 𝐴 = {π‘₯ ∣ π‘₯ ∈ 𝐴}
65fveq2i 6894 . . . . . . 7 (Undefβ€˜π΄) = (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴})
73, 4, 63eqtr4g 2797 . . . . . 6 (Β¬ βˆƒ!π‘₯ ∈ 𝐴 πœ‘ β†’ (β„©π‘₯ ∈ 𝐴 πœ‘) = (Undefβ€˜π΄))
87eleq1d 2818 . . . . 5 (Β¬ βˆƒ!π‘₯ ∈ 𝐴 πœ‘ β†’ ((β„©π‘₯ ∈ 𝐴 πœ‘) ∈ 𝐴 ↔ (Undefβ€˜π΄) ∈ 𝐴))
98notbid 317 . . . 4 (Β¬ βˆƒ!π‘₯ ∈ 𝐴 πœ‘ β†’ (Β¬ (β„©π‘₯ ∈ 𝐴 πœ‘) ∈ 𝐴 ↔ Β¬ (Undefβ€˜π΄) ∈ 𝐴))
102, 9syl5ibrcom 246 . . 3 (𝐴 ∈ 𝑉 β†’ (Β¬ βˆƒ!π‘₯ ∈ 𝐴 πœ‘ β†’ Β¬ (β„©π‘₯ ∈ 𝐴 πœ‘) ∈ 𝐴))
1110con4d 115 . 2 (𝐴 ∈ 𝑉 β†’ ((β„©π‘₯ ∈ 𝐴 πœ‘) ∈ 𝐴 β†’ βˆƒ!π‘₯ ∈ 𝐴 πœ‘))
121, 11impbid2 225 1 (𝐴 ∈ 𝑉 β†’ (βˆƒ!π‘₯ ∈ 𝐴 πœ‘ ↔ (β„©π‘₯ ∈ 𝐴 πœ‘) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∈ wcel 2106  {cab 2709  βˆƒ!wreu 3374  ifcif 4528  β„©cio 6493  β€˜cfv 6543  β„©crio 7363  Undefcund 8256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-riotaBAD 37818
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-riota 7364  df-undef 8257
This theorem is referenced by:  riotaclbBAD  37820  riotasvd  37821
  Copyright terms: Public domain W3C validator