Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaclbgBAD Structured version   Visualization version   GIF version

Theorem riotaclbgBAD 38912
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotaclbgBAD (𝐴𝑉 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem riotaclbgBAD
StepHypRef Expression
1 riotacl 7424 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
2 undefnel2 8320 . . . 4 (𝐴𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴)
3 iffalse 4557 . . . . . . 7 (¬ ∃!𝑥𝐴 𝜑 → if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴})) = (Undef‘{𝑥𝑥𝐴}))
4 ax-riotaBAD 38911 . . . . . . 7 (𝑥𝐴 𝜑) = if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴}))
5 abid1 2881 . . . . . . . 8 𝐴 = {𝑥𝑥𝐴}
65fveq2i 6925 . . . . . . 7 (Undef‘𝐴) = (Undef‘{𝑥𝑥𝐴})
73, 4, 63eqtr4g 2805 . . . . . 6 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = (Undef‘𝐴))
87eleq1d 2829 . . . . 5 (¬ ∃!𝑥𝐴 𝜑 → ((𝑥𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴))
98notbid 318 . . . 4 (¬ ∃!𝑥𝐴 𝜑 → (¬ (𝑥𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴))
102, 9syl5ibrcom 247 . . 3 (𝐴𝑉 → (¬ ∃!𝑥𝐴 𝜑 → ¬ (𝑥𝐴 𝜑) ∈ 𝐴))
1110con4d 115 . 2 (𝐴𝑉 → ((𝑥𝐴 𝜑) ∈ 𝐴 → ∃!𝑥𝐴 𝜑))
121, 11impbid2 226 1 (𝐴𝑉 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  {cab 2717  ∃!wreu 3386  ifcif 4548  cio 6525  cfv 6575  crio 7405  Undefcund 8315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-riotaBAD 38911
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-riota 7406  df-undef 8316
This theorem is referenced by:  riotaclbBAD  38913  riotasvd  38914
  Copyright terms: Public domain W3C validator