Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaclbgBAD | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotaclbgBAD | ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotacl 7250 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
2 | undefnel2 8093 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴) | |
3 | iffalse 4468 | . . . . . . 7 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
4 | ax-riotaBAD 36967 | . . . . . . 7 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
5 | abid1 2881 | . . . . . . . 8 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
6 | 5 | fveq2i 6777 | . . . . . . 7 ⊢ (Undef‘𝐴) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴}) |
7 | 3, 4, 6 | 3eqtr4g 2803 | . . . . . 6 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = (Undef‘𝐴)) |
8 | 7 | eleq1d 2823 | . . . . 5 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴)) |
9 | 8 | notbid 318 | . . . 4 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴)) |
10 | 2, 9 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
11 | 10 | con4d 115 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 → ∃!𝑥 ∈ 𝐴 𝜑)) |
12 | 1, 11 | impbid2 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 {cab 2715 ∃!wreu 3066 ifcif 4459 ℩cio 6389 ‘cfv 6433 ℩crio 7231 Undefcund 8088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-undef 8089 |
This theorem is referenced by: riotaclbBAD 36969 riotasvd 36970 |
Copyright terms: Public domain | W3C validator |