| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaclbgBAD | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotaclbgBAD | ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotacl 7363 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
| 2 | undefnel2 8258 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴) | |
| 3 | iffalse 4499 | . . . . . . 7 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
| 4 | ax-riotaBAD 38941 | . . . . . . 7 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
| 5 | abid1 2865 | . . . . . . . 8 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 6 | 5 | fveq2i 6863 | . . . . . . 7 ⊢ (Undef‘𝐴) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 7 | 3, 4, 6 | 3eqtr4g 2790 | . . . . . 6 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = (Undef‘𝐴)) |
| 8 | 7 | eleq1d 2814 | . . . . 5 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴)) |
| 9 | 8 | notbid 318 | . . . 4 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴)) |
| 10 | 2, 9 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
| 11 | 10 | con4d 115 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 → ∃!𝑥 ∈ 𝐴 𝜑)) |
| 12 | 1, 11 | impbid2 226 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {cab 2708 ∃!wreu 3354 ifcif 4490 ℩cio 6464 ‘cfv 6513 ℩crio 7345 Undefcund 8253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-riota 7346 df-undef 8254 |
| This theorem is referenced by: riotaclbBAD 38943 riotasvd 38944 |
| Copyright terms: Public domain | W3C validator |