Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaclbgBAD | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotaclbgBAD | ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotacl 7230 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
2 | undefnel2 8064 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ¬ (Undef‘𝐴) ∈ 𝐴) | |
3 | iffalse 4465 | . . . . . . 7 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
4 | ax-riotaBAD 36894 | . . . . . . 7 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | |
5 | abid1 2880 | . . . . . . . 8 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
6 | 5 | fveq2i 6759 | . . . . . . 7 ⊢ (Undef‘𝐴) = (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴}) |
7 | 3, 4, 6 | 3eqtr4g 2804 | . . . . . 6 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = (Undef‘𝐴)) |
8 | 7 | eleq1d 2823 | . . . . 5 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ (Undef‘𝐴) ∈ 𝐴)) |
9 | 8 | notbid 317 | . . . 4 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ ¬ (Undef‘𝐴) ∈ 𝐴)) |
10 | 2, 9 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
11 | 10 | con4d 115 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 → ∃!𝑥 ∈ 𝐴 𝜑)) |
12 | 1, 11 | impbid2 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 {cab 2715 ∃!wreu 3065 ifcif 4456 ℩cio 6374 ‘cfv 6418 ℩crio 7211 Undefcund 8059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-undef 8060 |
This theorem is referenced by: riotaclbBAD 36896 riotasvd 36897 |
Copyright terms: Public domain | W3C validator |