![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaclbgBAD | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotaclbgBAD | β’ (π΄ β π β (β!π₯ β π΄ π β (β©π₯ β π΄ π) β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotacl 7382 | . 2 β’ (β!π₯ β π΄ π β (β©π₯ β π΄ π) β π΄) | |
2 | undefnel2 8261 | . . . 4 β’ (π΄ β π β Β¬ (Undefβπ΄) β π΄) | |
3 | iffalse 4537 | . . . . . . 7 β’ (Β¬ β!π₯ β π΄ π β if(β!π₯ β π΄ π, (β©π₯(π₯ β π΄ β§ π)), (Undefβ{π₯ β£ π₯ β π΄})) = (Undefβ{π₯ β£ π₯ β π΄})) | |
4 | ax-riotaBAD 37818 | . . . . . . 7 β’ (β©π₯ β π΄ π) = if(β!π₯ β π΄ π, (β©π₯(π₯ β π΄ β§ π)), (Undefβ{π₯ β£ π₯ β π΄})) | |
5 | abid1 2870 | . . . . . . . 8 β’ π΄ = {π₯ β£ π₯ β π΄} | |
6 | 5 | fveq2i 6894 | . . . . . . 7 β’ (Undefβπ΄) = (Undefβ{π₯ β£ π₯ β π΄}) |
7 | 3, 4, 6 | 3eqtr4g 2797 | . . . . . 6 β’ (Β¬ β!π₯ β π΄ π β (β©π₯ β π΄ π) = (Undefβπ΄)) |
8 | 7 | eleq1d 2818 | . . . . 5 β’ (Β¬ β!π₯ β π΄ π β ((β©π₯ β π΄ π) β π΄ β (Undefβπ΄) β π΄)) |
9 | 8 | notbid 317 | . . . 4 β’ (Β¬ β!π₯ β π΄ π β (Β¬ (β©π₯ β π΄ π) β π΄ β Β¬ (Undefβπ΄) β π΄)) |
10 | 2, 9 | syl5ibrcom 246 | . . 3 β’ (π΄ β π β (Β¬ β!π₯ β π΄ π β Β¬ (β©π₯ β π΄ π) β π΄)) |
11 | 10 | con4d 115 | . 2 β’ (π΄ β π β ((β©π₯ β π΄ π) β π΄ β β!π₯ β π΄ π)) |
12 | 1, 11 | impbid2 225 | 1 β’ (π΄ β π β (β!π₯ β π΄ π β (β©π₯ β π΄ π) β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β wcel 2106 {cab 2709 β!wreu 3374 ifcif 4528 β©cio 6493 βcfv 6543 β©crio 7363 Undefcund 8256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7364 df-undef 8257 |
This theorem is referenced by: riotaclbBAD 37820 riotasvd 37821 |
Copyright terms: Public domain | W3C validator |