| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6438. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 7305 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cio 6436 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 4, 8 | wceq 1540 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: riotaeqdv 7307 riotabidv 7308 riotaex 7310 riotav 7311 riotauni 7312 nfriota1 7313 nfriotadw 7314 cbvriotaw 7315 cbvriotavw 7316 nfriotad 7317 cbvriota 7319 csbriota 7321 riotacl2 7322 riotabidva 7325 riota1 7327 riota2df 7329 snriota 7339 riotaund 7345 riotarab 7348 ismgmid 18539 q1peqb 26059 adjval 31838 riotaeqbii 36192 cbvriotavw2 36230 cbvriotadavw 36264 cbvriotadavw2 36284 |
| Copyright terms: Public domain | W3C validator |