| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6443. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 7308 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
| 5 | 2 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2111 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cio 6441 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 4, 8 | wceq 1541 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: riotaeqdv 7310 riotabidv 7311 riotaex 7313 riotav 7314 riotauni 7315 nfriota1 7316 nfriotadw 7317 cbvriotaw 7318 cbvriotavw 7319 nfriotad 7320 cbvriota 7322 csbriota 7324 riotacl2 7325 riotabidva 7328 riota1 7330 riota2df 7332 snriota 7342 riotaund 7348 riotarab 7351 ismgmid 18579 q1peqb 26094 adjval 31877 riotaeqbii 36249 cbvriotavw2 36287 cbvriotadavw 36321 cbvriotadavw2 36341 |
| Copyright terms: Public domain | W3C validator |