MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7344
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6464. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7343 . 2 class (𝑥𝐴 𝜑)
52cv 1539 . . . . 5 class 𝑥
65, 3wcel 2109 . . . 4 wff 𝑥𝐴
76, 1wa 395 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6462 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1540 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7345  riotabidv  7346  riotaex  7348  riotav  7349  riotauni  7350  nfriota1  7351  nfriotadw  7352  cbvriotaw  7353  cbvriotavw  7354  nfriotad  7355  cbvriota  7357  csbriota  7359  riotacl2  7360  riotabidva  7363  riota1  7365  riota2df  7367  snriota  7377  riotaund  7383  riotarab  7386  ismgmid  18592  q1peqb  26061  adjval  31819  riotaeqbii  36186  cbvriotavw2  36224  cbvriotadavw  36258  cbvriotadavw2  36278
  Copyright terms: Public domain W3C validator