MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7209
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6373. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7208 . 2 class (𝑥𝐴 𝜑)
52cv 1542 . . . . 5 class 𝑥
65, 3wcel 2112 . . . 4 wff 𝑥𝐴
76, 1wa 399 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6371 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1543 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7210  riotabidv  7211  riotaex  7213  riotav  7214  riotauni  7215  nfriota1  7216  nfriotadw  7217  cbvriotaw  7218  cbvriotavw  7219  nfriotad  7221  cbvriota  7223  csbriota  7225  riotacl2  7226  riotabidva  7229  riota1  7231  riota2df  7233  snriota  7243  riotaund  7249  ismgmid  18239  q1peqb  25199  adjval  30128  riotarab  33550
  Copyright terms: Public domain W3C validator