MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7367
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6494. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7366 . 2 class (𝑥𝐴 𝜑)
52cv 1538 . . . . 5 class 𝑥
65, 3wcel 2104 . . . 4 wff 𝑥𝐴
76, 1wa 394 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6492 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1539 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7368  riotabidv  7369  riotaex  7371  riotav  7372  riotauni  7373  nfriota1  7374  nfriotadw  7375  cbvriotaw  7376  cbvriotavw  7377  nfriotad  7379  cbvriota  7381  csbriota  7383  riotacl2  7384  riotabidva  7387  riota1  7389  riota2df  7391  snriota  7401  riotaund  7407  riotarab  7410  ismgmid  18590  q1peqb  25907  adjval  31410
  Copyright terms: Public domain W3C validator