Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6373. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 7208 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1542 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2112 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 399 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 6371 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1543 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 7210 riotabidv 7211 riotaex 7213 riotav 7214 riotauni 7215 nfriota1 7216 nfriotadw 7217 cbvriotaw 7218 cbvriotavw 7219 nfriotad 7221 cbvriota 7223 csbriota 7225 riotacl2 7226 riotabidva 7229 riota1 7231 riota2df 7233 snriota 7243 riotaund 7249 ismgmid 18239 q1peqb 25199 adjval 30128 riotarab 33550 |
Copyright terms: Public domain | W3C validator |