MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7360
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6483. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7359 . 2 class (𝑥𝐴 𝜑)
52cv 1539 . . . . 5 class 𝑥
65, 3wcel 2108 . . . 4 wff 𝑥𝐴
76, 1wa 395 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6481 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1540 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7361  riotabidv  7362  riotaex  7364  riotav  7365  riotauni  7366  nfriota1  7367  nfriotadw  7368  cbvriotaw  7369  cbvriotavw  7370  nfriotad  7371  cbvriota  7373  csbriota  7375  riotacl2  7376  riotabidva  7379  riota1  7381  riota2df  7383  snriota  7393  riotaund  7399  riotarab  7402  ismgmid  18641  q1peqb  26111  adjval  31817  riotaeqbii  36162  cbvriotavw2  36200  cbvriotadavw  36234  cbvriotadavw2  36254
  Copyright terms: Public domain W3C validator