Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6388. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 7224 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1540 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 6386 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1541 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 7226 riotabidv 7227 riotaex 7229 riotav 7230 riotauni 7231 nfriota1 7232 nfriotadw 7233 cbvriotaw 7234 cbvriotavw 7235 nfriotad 7237 cbvriota 7239 csbriota 7241 riotacl2 7242 riotabidva 7245 riota1 7247 riota2df 7249 snriota 7259 riotaund 7265 ismgmid 18330 q1peqb 25300 adjval 30231 riotarab 33652 |
Copyright terms: Public domain | W3C validator |