MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7365
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6496. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7364 . 2 class (𝑥𝐴 𝜑)
52cv 1541 . . . . 5 class 𝑥
65, 3wcel 2107 . . . 4 wff 𝑥𝐴
76, 1wa 397 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6494 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1542 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7366  riotabidv  7367  riotaex  7369  riotav  7370  riotauni  7371  nfriota1  7372  nfriotadw  7373  cbvriotaw  7374  cbvriotavw  7375  nfriotad  7377  cbvriota  7379  csbriota  7381  riotacl2  7382  riotabidva  7385  riota1  7387  riota2df  7389  snriota  7399  riotaund  7405  riotarab  7408  ismgmid  18584  q1peqb  25672  adjval  31143
  Copyright terms: Public domain W3C validator