| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6464. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 7343 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cio 6462 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 4, 8 | wceq 1540 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: riotaeqdv 7345 riotabidv 7346 riotaex 7348 riotav 7349 riotauni 7350 nfriota1 7351 nfriotadw 7352 cbvriotaw 7353 cbvriotavw 7354 nfriotad 7355 cbvriota 7357 csbriota 7359 riotacl2 7360 riotabidva 7363 riota1 7365 riota2df 7367 snriota 7377 riotaund 7383 riotarab 7386 ismgmid 18592 q1peqb 26061 adjval 31819 riotaeqbii 36186 cbvriotavw2 36224 cbvriotadavw 36258 cbvriotadavw2 36278 |
| Copyright terms: Public domain | W3C validator |