| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version | ||
| Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6452. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crio 7325 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cio 6450 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 4, 8 | wceq 1540 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: riotaeqdv 7327 riotabidv 7328 riotaex 7330 riotav 7331 riotauni 7332 nfriota1 7333 nfriotadw 7334 cbvriotaw 7335 cbvriotavw 7336 nfriotad 7337 cbvriota 7339 csbriota 7341 riotacl2 7342 riotabidva 7345 riota1 7347 riota2df 7349 snriota 7359 riotaund 7365 riotarab 7368 ismgmid 18574 q1peqb 26094 adjval 31869 riotaeqbii 36179 cbvriotavw2 36217 cbvriotadavw 36251 cbvriotadavw2 36271 |
| Copyright terms: Public domain | W3C validator |