MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7225
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6388. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7224 . 2 class (𝑥𝐴 𝜑)
52cv 1540 . . . . 5 class 𝑥
65, 3wcel 2109 . . . 4 wff 𝑥𝐴
76, 1wa 395 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6386 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1541 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7226  riotabidv  7227  riotaex  7229  riotav  7230  riotauni  7231  nfriota1  7232  nfriotadw  7233  cbvriotaw  7234  cbvriotavw  7235  nfriotad  7237  cbvriota  7239  csbriota  7241  riotacl2  7242  riotabidva  7245  riota1  7247  riota2df  7249  snriota  7259  riotaund  7265  ismgmid  18330  q1peqb  25300  adjval  30231  riotarab  33652
  Copyright terms: Public domain W3C validator