![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6515. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 7386 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1535 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2105 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 6513 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1536 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 7388 riotabidv 7389 riotaex 7391 riotav 7392 riotauni 7393 nfriota1 7394 nfriotadw 7395 cbvriotaw 7396 cbvriotavw 7397 nfriotad 7398 cbvriota 7400 csbriota 7402 riotacl2 7403 riotabidva 7406 riota1 7408 riota2df 7410 snriota 7420 riotaund 7426 riotarab 7429 ismgmid 18690 q1peqb 26209 adjval 31918 riotaeqbii 36179 cbvriotavw2 36218 cbvriotadavw 36252 cbvriotadavw2 36272 |
Copyright terms: Public domain | W3C validator |