MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7387
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6515. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7386 . 2 class (𝑥𝐴 𝜑)
52cv 1535 . . . . 5 class 𝑥
65, 3wcel 2105 . . . 4 wff 𝑥𝐴
76, 1wa 395 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6513 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1536 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7388  riotabidv  7389  riotaex  7391  riotav  7392  riotauni  7393  nfriota1  7394  nfriotadw  7395  cbvriotaw  7396  cbvriotavw  7397  nfriotad  7398  cbvriota  7400  csbriota  7402  riotacl2  7403  riotabidva  7406  riota1  7408  riota2df  7410  snriota  7420  riotaund  7426  riotarab  7429  ismgmid  18690  q1peqb  26209  adjval  31918  riotaeqbii  36179  cbvriotavw2  36218  cbvriotadavw  36252  cbvriotadavw2  36272
  Copyright terms: Public domain W3C validator