Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6391. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 7231 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2106 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 396 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 6389 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1539 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 7233 riotabidv 7234 riotaex 7236 riotav 7237 riotauni 7238 nfriota1 7239 nfriotadw 7240 cbvriotaw 7241 cbvriotavw 7242 nfriotad 7244 cbvriota 7246 csbriota 7248 riotacl2 7249 riotabidva 7252 riota1 7254 riota2df 7256 snriota 7266 riotaund 7272 ismgmid 18349 q1peqb 25319 adjval 30252 riotarab 33673 |
Copyright terms: Public domain | W3C validator |