MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7404
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6525. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7403 . 2 class (𝑥𝐴 𝜑)
52cv 1536 . . . . 5 class 𝑥
65, 3wcel 2108 . . . 4 wff 𝑥𝐴
76, 1wa 395 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6523 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1537 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7405  riotabidv  7406  riotaex  7408  riotav  7409  riotauni  7410  nfriota1  7411  nfriotadw  7412  cbvriotaw  7413  cbvriotavw  7414  nfriotad  7416  cbvriota  7418  csbriota  7420  riotacl2  7421  riotabidva  7424  riota1  7426  riota2df  7428  snriota  7438  riotaund  7444  riotarab  7447  ismgmid  18703  q1peqb  26215  adjval  31922  riotaeqbii  36162  cbvriotavw2  36202  cbvriotadavw  36236  cbvriotadavw2  36256
  Copyright terms: Public domain W3C validator