![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6525. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 7403 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1536 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 6523 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1537 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 7405 riotabidv 7406 riotaex 7408 riotav 7409 riotauni 7410 nfriota1 7411 nfriotadw 7412 cbvriotaw 7413 cbvriotavw 7414 nfriotad 7416 cbvriota 7418 csbriota 7420 riotacl2 7421 riotabidva 7424 riota1 7426 riota2df 7428 snriota 7438 riotaund 7444 riotarab 7447 ismgmid 18703 q1peqb 26215 adjval 31922 riotaeqbii 36162 cbvriotavw2 36202 cbvriotadavw 36236 cbvriotadavw2 36256 |
Copyright terms: Public domain | W3C validator |