![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6496. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 7364 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1541 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 397 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 6494 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1542 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 7366 riotabidv 7367 riotaex 7369 riotav 7370 riotauni 7371 nfriota1 7372 nfriotadw 7373 cbvriotaw 7374 cbvriotavw 7375 nfriotad 7377 cbvriota 7379 csbriota 7381 riotacl2 7382 riotabidva 7385 riota1 7387 riota2df 7389 snriota 7399 riotaund 7405 riotarab 7408 ismgmid 18584 q1peqb 25672 adjval 31143 |
Copyright terms: Public domain | W3C validator |