![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6494. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 7366 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2104 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 394 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 6492 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1539 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 7368 riotabidv 7369 riotaex 7371 riotav 7372 riotauni 7373 nfriota1 7374 nfriotadw 7375 cbvriotaw 7376 cbvriotavw 7377 nfriotad 7379 cbvriota 7381 csbriota 7383 riotacl2 7384 riotabidva 7387 riota1 7389 riota2df 7391 snriota 7401 riotaund 7407 riotarab 7410 ismgmid 18590 q1peqb 25907 adjval 31410 |
Copyright terms: Public domain | W3C validator |