MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7306
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6438. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7305 . 2 class (𝑥𝐴 𝜑)
52cv 1539 . . . . 5 class 𝑥
65, 3wcel 2109 . . . 4 wff 𝑥𝐴
76, 1wa 395 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6436 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1540 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7307  riotabidv  7308  riotaex  7310  riotav  7311  riotauni  7312  nfriota1  7313  nfriotadw  7314  cbvriotaw  7315  cbvriotavw  7316  nfriotad  7317  cbvriota  7319  csbriota  7321  riotacl2  7322  riotabidva  7325  riota1  7327  riota2df  7329  snriota  7339  riotaund  7345  riotarab  7348  ismgmid  18539  q1peqb  26059  adjval  31838  riotaeqbii  36192  cbvriotavw2  36230  cbvriotadavw  36264  cbvriotadavw2  36284
  Copyright terms: Public domain W3C validator