MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 7232
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6391. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 7231 . 2 class (𝑥𝐴 𝜑)
52cv 1538 . . . . 5 class 𝑥
65, 3wcel 2106 . . . 4 wff 𝑥𝐴
76, 1wa 396 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 6389 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1539 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  7233  riotabidv  7234  riotaex  7236  riotav  7237  riotauni  7238  nfriota1  7239  nfriotadw  7240  cbvriotaw  7241  cbvriotavw  7242  nfriotad  7244  cbvriota  7246  csbriota  7248  riotacl2  7249  riotabidva  7252  riota1  7254  riota2df  7256  snriota  7266  riotaund  7272  ismgmid  18349  q1peqb  25319  adjval  30252  riotarab  33673
  Copyright terms: Public domain W3C validator