MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iota Structured version   Visualization version   GIF version

Definition df-iota 6505
Description: Define Russell's definition description binder, which can be read as "the unique 𝑥 such that 𝜑", where 𝜑 ordinarily contains 𝑥 as a free variable. Our definition is meaningful only when there is exactly one 𝑥 such that 𝜑 is true (see iotaval 6524); otherwise, it evaluates to the empty set (see iotanul 6531). Russell used the inverted iota symbol to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7399 (or iotacl 6539 for unbounded iota), as demonstrated in the proof of supub 9490. This can be easier than applying riotasbc 7401 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

Assertion
Ref Expression
df-iota (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-iota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2cio 6503 . 2 class (℩𝑥𝜑)
41, 2cab 2705 . . . . 5 class {𝑥𝜑}
5 vy . . . . . . 7 setvar 𝑦
65cv 1532 . . . . . 6 class 𝑦
76csn 4632 . . . . 5 class {𝑦}
84, 7wceq 1533 . . . 4 wff {𝑥𝜑} = {𝑦}
98, 5cab 2705 . . 3 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
109cuni 4912 . 2 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
113, 10wceq 1533 1 wff (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Colors of variables: wff setvar class
This definition is referenced by:  dfiota2  6506  cbviotavw  6513  iotaeq  6518  iotabi  6519  iotaval2  6521  iotanul2  6523  dffv4  6899  dfiota3  35552  sn-iotalemcor  41741  reuabaiotaiota  46496
  Copyright terms: Public domain W3C validator