MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iota Structured version   Visualization version   GIF version

Definition df-iota 6437
Description: Define Russell's definition description binder, which can be read as "the unique 𝑥 such that 𝜑", where 𝜑 ordinarily contains 𝑥 as a free variable. Our definition is meaningful only when there is exactly one 𝑥 such that 𝜑 is true (see iotaval 6455); otherwise, it evaluates to the empty set (see iotanul 6461). Russell used the inverted iota symbol to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7319 (or iotacl 6467 for unbounded iota), as demonstrated in the proof of supub 9343. This can be easier than applying riotasbc 7321 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

Assertion
Ref Expression
df-iota (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-iota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2cio 6435 . 2 class (℩𝑥𝜑)
41, 2cab 2709 . . . . 5 class {𝑥𝜑}
5 vy . . . . . . 7 setvar 𝑦
65cv 1540 . . . . . 6 class 𝑦
76csn 4573 . . . . 5 class {𝑦}
84, 7wceq 1541 . . . 4 wff {𝑥𝜑} = {𝑦}
98, 5cab 2709 . . 3 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
109cuni 4856 . 2 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
113, 10wceq 1541 1 wff (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Colors of variables: wff setvar class
This definition is referenced by:  dfiota2  6438  cbviotavw  6445  iotaeq  6449  iotabi  6450  iotaval2  6452  iotanul2  6454  dffv4  6819  dfiota3  35965  cbviotadavw  36311  sn-iotalemcor  42263  reuabaiotaiota  47126
  Copyright terms: Public domain W3C validator