MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iota Structured version   Visualization version   GIF version

Definition df-iota 6501
Description: Define Russell's definition description binder, which can be read as "the unique 𝑥 such that 𝜑", where 𝜑 ordinarily contains 𝑥 as a free variable. Our definition is meaningful only when there is exactly one 𝑥 such that 𝜑 is true (see iotaval 6520); otherwise, it evaluates to the empty set (see iotanul 6527). Russell used the inverted iota symbol to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7392 (or iotacl 6535 for unbounded iota), as demonstrated in the proof of supub 9484. This can be easier than applying riotasbc 7394 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

Assertion
Ref Expression
df-iota (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-iota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2cio 6499 . 2 class (℩𝑥𝜑)
41, 2cab 2702 . . . . 5 class {𝑥𝜑}
5 vy . . . . . . 7 setvar 𝑦
65cv 1532 . . . . . 6 class 𝑦
76csn 4630 . . . . 5 class {𝑦}
84, 7wceq 1533 . . . 4 wff {𝑥𝜑} = {𝑦}
98, 5cab 2702 . . 3 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
109cuni 4909 . 2 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
113, 10wceq 1533 1 wff (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Colors of variables: wff setvar class
This definition is referenced by:  dfiota2  6502  cbviotavw  6509  iotaeq  6514  iotabi  6515  iotaval2  6517  iotanul2  6519  dffv4  6893  dfiota3  35650  sn-iotalemcor  41844  reuabaiotaiota  46605
  Copyright terms: Public domain W3C validator