MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iota Structured version   Visualization version   GIF version

Definition df-iota 6514
Description: Define Russell's definition description binder, which can be read as "the unique 𝑥 such that 𝜑", where 𝜑 ordinarily contains 𝑥 as a free variable. Our definition is meaningful only when there is exactly one 𝑥 such that 𝜑 is true (see iotaval 6532); otherwise, it evaluates to the empty set (see iotanul 6539). Russell used the inverted iota symbol to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7404 (or iotacl 6547 for unbounded iota), as demonstrated in the proof of supub 9499. This can be easier than applying riotasbc 7406 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

Assertion
Ref Expression
df-iota (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-iota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2cio 6512 . 2 class (℩𝑥𝜑)
41, 2cab 2714 . . . . 5 class {𝑥𝜑}
5 vy . . . . . . 7 setvar 𝑦
65cv 1539 . . . . . 6 class 𝑦
76csn 4626 . . . . 5 class {𝑦}
84, 7wceq 1540 . . . 4 wff {𝑥𝜑} = {𝑦}
98, 5cab 2714 . . 3 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
109cuni 4907 . 2 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
113, 10wceq 1540 1 wff (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Colors of variables: wff setvar class
This definition is referenced by:  dfiota2  6515  cbviotavw  6522  iotaeq  6526  iotabi  6527  iotaval2  6529  iotanul2  6531  dffv4  6903  dfiota3  35924  cbviotadavw  36270  sn-iotalemcor  42261  reuabaiotaiota  47099
  Copyright terms: Public domain W3C validator