MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iota Structured version   Visualization version   GIF version

Definition df-iota 6442
Description: Define Russell's definition description binder, which can be read as "the unique 𝑥 such that 𝜑", where 𝜑 ordinarily contains 𝑥 as a free variable. Our definition is meaningful only when there is exactly one 𝑥 such that 𝜑 is true (see iotaval 6460); otherwise, it evaluates to the empty set (see iotanul 6466). Russell used the inverted iota symbol to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 7326 (or iotacl 6472 for unbounded iota), as demonstrated in the proof of supub 9368. This can be easier than applying riotasbc 7328 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

Assertion
Ref Expression
df-iota (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-iota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2cio 6440 . 2 class (℩𝑥𝜑)
41, 2cab 2707 . . . . 5 class {𝑥𝜑}
5 vy . . . . . . 7 setvar 𝑦
65cv 1539 . . . . . 6 class 𝑦
76csn 4579 . . . . 5 class {𝑦}
84, 7wceq 1540 . . . 4 wff {𝑥𝜑} = {𝑦}
98, 5cab 2707 . . 3 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
109cuni 4861 . 2 class {𝑦 ∣ {𝑥𝜑} = {𝑦}}
113, 10wceq 1540 1 wff (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
Colors of variables: wff setvar class
This definition is referenced by:  dfiota2  6443  cbviotavw  6450  iotaeq  6454  iotabi  6455  iotaval2  6457  iotanul2  6459  dffv4  6823  dfiota3  35899  cbviotadavw  36245  sn-iotalemcor  42198  reuabaiotaiota  47075
  Copyright terms: Public domain W3C validator