Step | Hyp | Ref
| Expression |
1 | | vx |
. . . . . 6
setvar π₯ |
2 | 1 | cv 1532 |
. . . . 5
class π₯ |
3 | | cchp 26940 |
. . . . 5
class
Ο |
4 | 2, 3 | cfv 6533 |
. . . 4
class
(Οβπ₯) |
5 | | ccht 26938 |
. . . . 5
class
ΞΈ |
6 | 2, 5 | cfv 6533 |
. . . 4
class
(ΞΈβπ₯) |
7 | | cmin 11440 |
. . . 4
class
β |
8 | 4, 6, 7 | co 7401 |
. . 3
class
((Οβπ₯)
β (ΞΈβπ₯)) |
9 | | c1 11106 |
. . . . 5
class
1 |
10 | | c4 12265 |
. . . . . 6
class
4 |
11 | | c2 12263 |
. . . . . . 7
class
2 |
12 | | c6 12267 |
. . . . . . . 8
class
6 |
13 | 12, 11 | cdp2 32470 |
. . . . . . 7
class _62 |
14 | 11, 13 | cdp2 32470 |
. . . . . 6
class _2_62 |
15 | 10, 14 | cdp2 32470 |
. . . . 5
class _4_2_62 |
16 | | cdp 32487 |
. . . . 5
class
. |
17 | 9, 15, 16 | co 7401 |
. . . 4
class (1._4_2_62) |
18 | | csqrt 15176 |
. . . . 5
class
β |
19 | 2, 18 | cfv 6533 |
. . . 4
class
(ββπ₯) |
20 | | cmul 11110 |
. . . 4
class
Β· |
21 | 17, 19, 20 | co 7401 |
. . 3
class ((1._4_2_62)
Β· (ββπ₯)) |
22 | | clt 11244 |
. . 3
class
< |
23 | 8, 21, 22 | wbr 5138 |
. 2
wff
((Οβπ₯)
β (ΞΈβπ₯))
< ((1._4_2_62)
Β· (ββπ₯)) |
24 | | crp 12970 |
. 2
class
β+ |
25 | 23, 1, 24 | wral 3053 |
1
wff
βπ₯ β
β+ ((Οβπ₯) β (ΞΈβπ₯)) < ((1._4_2_62)
Β· (ββπ₯)) |