Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-ros336 Structured version   Visualization version   GIF version

Axiom ax-ros336 34113
Description: Theorem 13. of [RosserSchoenfeld] p. 71. Theorem chpchtlim 27327 states that the ψ and ΞΈ function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Assertion
Ref Expression
ax-ros336 βˆ€π‘₯ ∈ ℝ+ ((Οˆβ€˜π‘₯) βˆ’ (ΞΈβ€˜π‘₯)) < ((1.4262) Β· (βˆšβ€˜π‘₯))

Detailed syntax breakdown of Axiom ax-ros336
StepHypRef Expression
1 vx . . . . . 6 setvar π‘₯
21cv 1532 . . . . 5 class π‘₯
3 cchp 26940 . . . . 5 class ψ
42, 3cfv 6533 . . . 4 class (Οˆβ€˜π‘₯)
5 ccht 26938 . . . . 5 class ΞΈ
62, 5cfv 6533 . . . 4 class (ΞΈβ€˜π‘₯)
7 cmin 11440 . . . 4 class βˆ’
84, 6, 7co 7401 . . 3 class ((Οˆβ€˜π‘₯) βˆ’ (ΞΈβ€˜π‘₯))
9 c1 11106 . . . . 5 class 1
10 c4 12265 . . . . . 6 class 4
11 c2 12263 . . . . . . 7 class 2
12 c6 12267 . . . . . . . 8 class 6
1312, 11cdp2 32470 . . . . . . 7 class 62
1411, 13cdp2 32470 . . . . . 6 class 262
1510, 14cdp2 32470 . . . . 5 class 4262
16 cdp 32487 . . . . 5 class .
179, 15, 16co 7401 . . . 4 class (1.4262)
18 csqrt 15176 . . . . 5 class √
192, 18cfv 6533 . . . 4 class (βˆšβ€˜π‘₯)
20 cmul 11110 . . . 4 class Β·
2117, 19, 20co 7401 . . 3 class ((1.4262) Β· (βˆšβ€˜π‘₯))
22 clt 11244 . . 3 class <
238, 21, 22wbr 5138 . 2 wff ((Οˆβ€˜π‘₯) βˆ’ (ΞΈβ€˜π‘₯)) < ((1.4262) Β· (βˆšβ€˜π‘₯))
24 crp 12970 . 2 class ℝ+
2523, 1, 24wral 3053 1 wff βˆ€π‘₯ ∈ ℝ+ ((Οˆβ€˜π‘₯) βˆ’ (ΞΈβ€˜π‘₯)) < ((1.4262) Β· (βˆšβ€˜π‘₯))
Colors of variables: wff setvar class
This axiom is referenced by:  hgt750lemd  34115
  Copyright terms: Public domain W3C validator