| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-ros336 | Structured version Visualization version GIF version | ||
| Description: Theorem 13. of [RosserSchoenfeld] p. 71. Theorem chpchtlim 27523 states that the ψ and θ function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
| Ref | Expression |
|---|---|
| ax-ros336 | ⊢ ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62) · (√‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . . . 6 setvar 𝑥 | |
| 2 | 1 | cv 1539 | . . . . 5 class 𝑥 |
| 3 | cchp 27136 | . . . . 5 class ψ | |
| 4 | 2, 3 | cfv 6561 | . . . 4 class (ψ‘𝑥) |
| 5 | ccht 27134 | . . . . 5 class θ | |
| 6 | 2, 5 | cfv 6561 | . . . 4 class (θ‘𝑥) |
| 7 | cmin 11492 | . . . 4 class − | |
| 8 | 4, 6, 7 | co 7431 | . . 3 class ((ψ‘𝑥) − (θ‘𝑥)) |
| 9 | c1 11156 | . . . . 5 class 1 | |
| 10 | c4 12323 | . . . . . 6 class 4 | |
| 11 | c2 12321 | . . . . . . 7 class 2 | |
| 12 | c6 12325 | . . . . . . . 8 class 6 | |
| 13 | 12, 11 | cdp2 32853 | . . . . . . 7 class _62 |
| 14 | 11, 13 | cdp2 32853 | . . . . . 6 class _2_62 |
| 15 | 10, 14 | cdp2 32853 | . . . . 5 class _4_2_62 |
| 16 | cdp 32870 | . . . . 5 class . | |
| 17 | 9, 15, 16 | co 7431 | . . . 4 class (1._4_2_62) |
| 18 | csqrt 15272 | . . . . 5 class √ | |
| 19 | 2, 18 | cfv 6561 | . . . 4 class (√‘𝑥) |
| 20 | cmul 11160 | . . . 4 class · | |
| 21 | 17, 19, 20 | co 7431 | . . 3 class ((1._4_2_62) · (√‘𝑥)) |
| 22 | clt 11295 | . . 3 class < | |
| 23 | 8, 21, 22 | wbr 5143 | . 2 wff ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62) · (√‘𝑥)) |
| 24 | crp 13034 | . 2 class ℝ+ | |
| 25 | 23, 1, 24 | wral 3061 | 1 wff ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62) · (√‘𝑥)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hgt750lemd 34663 |
| Copyright terms: Public domain | W3C validator |