Detailed syntax breakdown of Axiom ax-ros335
Step | Hyp | Ref
| Expression |
1 | | vx |
. . . . 5
setvar 𝑥 |
2 | 1 | cv 1538 |
. . . 4
class 𝑥 |
3 | | cchp 26147 |
. . . 4
class
ψ |
4 | 2, 3 | cfv 6418 |
. . 3
class
(ψ‘𝑥) |
5 | | c1 10803 |
. . . . 5
class
1 |
6 | | cc0 10802 |
. . . . . 6
class
0 |
7 | | c3 11959 |
. . . . . . 7
class
3 |
8 | | c8 11964 |
. . . . . . . 8
class
8 |
9 | 8, 7 | cdp2 31047 |
. . . . . . . 8
class _83 |
10 | 8, 9 | cdp2 31047 |
. . . . . . 7
class _8_83 |
11 | 7, 10 | cdp2 31047 |
. . . . . 6
class _3_8_83 |
12 | 6, 11 | cdp2 31047 |
. . . . 5
class _0_3_8_83 |
13 | | cdp 31064 |
. . . . 5
class
. |
14 | 5, 12, 13 | co 7255 |
. . . 4
class (1._0_3_8_83) |
15 | | cmul 10807 |
. . . 4
class
· |
16 | 14, 2, 15 | co 7255 |
. . 3
class ((1._0_3_8_83)
· 𝑥) |
17 | | clt 10940 |
. . 3
class
< |
18 | 4, 16, 17 | wbr 5070 |
. 2
wff
(ψ‘𝑥) <
((1._0_3_8_83)
· 𝑥) |
19 | | crp 12659 |
. 2
class
ℝ+ |
20 | 18, 1, 19 | wral 3063 |
1
wff
∀𝑥 ∈
ℝ+ (ψ‘𝑥) < ((1._0_3_8_83)
· 𝑥) |