| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hgt750lemc | Structured version Visualization version GIF version | ||
| Description: An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| hgt750lemc.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| hgt750lemc | ⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1._0_3_8_83) · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hgt750lemc.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nnzd 12556 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 3 | chpvalz 34619 | . . 3 ⊢ (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) |
| 5 | fveq2 6858 | . . . 4 ⊢ (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁)) | |
| 6 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝑁 → ((1._0_3_8_83) · 𝑥) = ((1._0_3_8_83) · 𝑁)) | |
| 7 | 5, 6 | breq12d 5120 | . . 3 ⊢ (𝑥 = 𝑁 → ((ψ‘𝑥) < ((1._0_3_8_83) · 𝑥) ↔ (ψ‘𝑁) < ((1._0_3_8_83) · 𝑁))) |
| 8 | ax-ros335 34636 | . . . 4 ⊢ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1._0_3_8_83) · 𝑥) | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1._0_3_8_83) · 𝑥)) |
| 10 | 1 | nnrpd 12993 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
| 11 | 7, 9, 10 | rspcdva 3589 | . 2 ⊢ (𝜑 → (ψ‘𝑁) < ((1._0_3_8_83) · 𝑁)) |
| 12 | 4, 11 | eqbrtrrd 5131 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1._0_3_8_83) · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ℕcn 12186 3c3 12242 8c8 12247 ℤcz 12529 ℝ+crp 12951 ...cfz 13468 Σcsu 15652 Λcvma 27002 ψcchp 27003 _cdp2 32791 .cdp 32808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-ros335 34636 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fl 13754 df-seq 13967 df-sum 15653 df-chp 27009 |
| This theorem is referenced by: hgt750leme 34649 |
| Copyright terms: Public domain | W3C validator |