Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemc Structured version   Visualization version   GIF version

Theorem hgt750lemc 33597
Description: An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypothesis
Ref Expression
hgt750lemc.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
hgt750lemc (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1.03883) · 𝑁))
Distinct variable group:   𝑗,𝑁
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem hgt750lemc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hgt750lemc.n . . . 4 (𝜑𝑁 ∈ ℕ)
21nnzd 12581 . . 3 (𝜑𝑁 ∈ ℤ)
3 chpvalz 33578 . . 3 (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
42, 3syl 17 . 2 (𝜑 → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
5 fveq2 6888 . . . 4 (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁))
6 oveq2 7412 . . . 4 (𝑥 = 𝑁 → ((1.03883) · 𝑥) = ((1.03883) · 𝑁))
75, 6breq12d 5160 . . 3 (𝑥 = 𝑁 → ((ψ‘𝑥) < ((1.03883) · 𝑥) ↔ (ψ‘𝑁) < ((1.03883) · 𝑁)))
8 ax-ros335 33595 . . . 4 𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1.03883) · 𝑥)
98a1i 11 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1.03883) · 𝑥))
101nnrpd 13010 . . 3 (𝜑𝑁 ∈ ℝ+)
117, 9, 10rspcdva 3613 . 2 (𝜑 → (ψ‘𝑁) < ((1.03883) · 𝑁))
124, 11eqbrtrrd 5171 1 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1.03883) · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wral 3062   class class class wbr 5147  cfv 6540  (class class class)co 7404  0cc0 11106  1c1 11107   · cmul 11111   < clt 11244  cn 12208  3c3 12264  8c8 12269  cz 12554  +crp 12970  ...cfz 13480  Σcsu 15628  Λcvma 26576  ψcchp 26577  cdp2 32015  .cdp 32032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-ros335 33595
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753  df-seq 13963  df-sum 15629  df-chp 26583
This theorem is referenced by:  hgt750leme  33608
  Copyright terms: Public domain W3C validator