MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtlim Structured version   Visualization version   GIF version

Theorem chpchtlim 27442
Description: The ψ and θ functions are asymptotic to each other, so is sufficient to prove either θ(𝑥) / 𝑥𝑟 1 or ψ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpchtlim (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1

Proof of Theorem chpchtlim
StepHypRef Expression
1 1red 11236 . . 3 (⊤ → 1 ∈ ℝ)
2 1red 11236 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
3 2re 12314 . . . . . . . . . . 11 2 ∈ ℝ
4 elicopnf 13462 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
53, 4ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simplbi 497 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
76adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
8 0red 11238 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
93a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
10 2pos 12343 . . . . . . . . . . . . 13 0 < 2
1110a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 < 2)
125simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
138, 9, 6, 11, 12ltletrd 11395 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
146, 13elrpd 13048 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
1514adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
1615rpge0d 13055 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ≤ 𝑥)
177, 16resqrtcld 15436 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ)
1815relogcld 26584 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ)
1917, 18remulcld 11265 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℝ)
2012adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
21 chtrpcl 27137 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
227, 20, 21syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
2319, 22rerpdivcld 13082 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ)
246ssriv 3962 . . . . . 6 (2[,)+∞) ⊆ ℝ
251recnd 11263 . . . . . 6 (⊤ → 1 ∈ ℂ)
26 rlimconst 15560 . . . . . 6 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
2724, 25, 26sylancr 587 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
28 ovexd 7440 . . . . . . . 8 (⊤ → (2[,)+∞) ∈ V)
297, 22rerpdivcld 13082 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / (θ‘𝑥)) ∈ ℝ)
30 ovexd 7440 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / 𝑥) ∈ V)
31 eqidd 2736 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))))
327recnd 11263 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
33 cxpsqrt 26664 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3432, 33syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3534oveq2d 7421 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = ((log‘𝑥) / (√‘𝑥)))
3618recnd 11263 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℂ)
3715rpsqrtcld 15430 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ+)
3837rpcnne0d 13060 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
39 divcan5 11943 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
4036, 38, 38, 39syl3anc 1373 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
41 remsqsqrt 15275 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
427, 16, 41syl2anc 584 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
4342oveq2d 7421 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4435, 40, 433eqtr2d 2776 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4544mpteq2dva 5214 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / 𝑥)))
4628, 29, 30, 31, 45offval2 7691 . . . . . . 7 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))))
4715rpne0d 13056 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ≠ 0)
4822rpcnne0d 13060 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
4919recnd 11263 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℂ)
50 dmdcan 11951 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5132, 47, 48, 49, 50syl211anc 1378 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5251mpteq2dva 5214 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
5346, 52eqtrd 2770 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
54 chto1lb 27441 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1)
5514ssriv 3962 . . . . . . . . 9 (2[,)+∞) ⊆ ℝ+
5655a1i 11 . . . . . . . 8 (⊤ → (2[,)+∞) ⊆ ℝ+)
57 1rp 13012 . . . . . . . . . . 11 1 ∈ ℝ+
58 rphalfcl 13036 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5957, 58ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
60 cxploglim 26940 . . . . . . . . . 10 ((1 / 2) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6159, 60ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0
6261a1i 11 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6356, 62rlimres2 15577 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
64 o1rlimmul 15635 . . . . . . 7 (((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6554, 63, 64sylancr 587 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6653, 65eqbrtrrd 5143 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ⇝𝑟 0)
672, 23, 27, 66rlimadd 15659 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 (1 + 0))
68 1p0e1 12364 . . . 4 (1 + 0) = 1
6967, 68breqtrdi 5160 . . 3 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 1)
70 1re 11235 . . . 4 1 ∈ ℝ
71 readdcl 11212 . . . 4 ((1 ∈ ℝ ∧ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
7270, 23, 71sylancr 587 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
73 chpcl 27086 . . . . 5 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
747, 73syl 17 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ∈ ℝ)
7574, 22rerpdivcld 13082 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ)
76 chtcl 27071 . . . . . . . 8 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
777, 76syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
7877, 19readdcld 11264 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) ∈ ℝ)
793a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
80 1le2 12449 . . . . . . . . 9 1 ≤ 2
8180a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 2)
822, 79, 7, 81, 20letrd 11392 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 𝑥)
83 chpub 27183 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
847, 82, 83syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
8574, 78, 22, 84lediv1dd 13109 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)))
8622rpcnd 13053 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℂ)
87 divdir 11921 . . . . . . 7 (((θ‘𝑥) ∈ ℂ ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
8886, 49, 48, 87syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
89 divid 11927 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9048, 89syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9190oveq1d 7420 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9288, 91eqtrd 2770 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9385, 92breqtrd 5145 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9493adantrr 717 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9586mullidd 11253 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) = (θ‘𝑥))
96 chtlepsi 27169 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ≤ (ψ‘𝑥))
977, 96syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ≤ (ψ‘𝑥))
9895, 97eqbrtrd 5141 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) ≤ (ψ‘𝑥))
992, 74, 22lemuldivd 13100 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((1 · (θ‘𝑥)) ≤ (ψ‘𝑥) ↔ 1 ≤ ((ψ‘𝑥) / (θ‘𝑥))))
10098, 99mpbid 232 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
101100adantrr 717 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
1021, 1, 69, 72, 75, 94, 101rlimsqz2 15667 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
103102mptru 1547 1 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2932  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  f cof 7669  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266   < clt 11269  cle 11270   / cdiv 11894  2c2 12295  +crp 13008  [,)cico 13364  csqrt 15252  𝑟 crli 15501  𝑂(1)co1 15502  logclog 26515  𝑐ccxp 26516  θccht 27053  ψcchp 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-o1 15506  df-lo1 15507  df-sum 15703  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518  df-cht 27059  df-vma 27060  df-chp 27061  df-ppi 27062
This theorem is referenced by:  chpo1ub  27443  pnt2  27576
  Copyright terms: Public domain W3C validator