MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtlim Structured version   Visualization version   GIF version

Theorem chpchtlim 26827
Description: The ψ and θ functions are asymptotic to each other, so is sufficient to prove either θ(𝑥) / 𝑥𝑟 1 or ψ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpchtlim (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1

Proof of Theorem chpchtlim
StepHypRef Expression
1 1red 11156 . . 3 (⊤ → 1 ∈ ℝ)
2 1red 11156 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
3 2re 12227 . . . . . . . . . . 11 2 ∈ ℝ
4 elicopnf 13362 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
53, 4ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simplbi 498 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
76adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
8 0red 11158 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
93a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
10 2pos 12256 . . . . . . . . . . . . 13 0 < 2
1110a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 < 2)
125simprbi 497 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
138, 9, 6, 11, 12ltletrd 11315 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
146, 13elrpd 12954 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
1514adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
1615rpge0d 12961 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ≤ 𝑥)
177, 16resqrtcld 15302 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ)
1815relogcld 25978 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ)
1917, 18remulcld 11185 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℝ)
2012adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
21 chtrpcl 26524 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
227, 20, 21syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
2319, 22rerpdivcld 12988 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ)
246ssriv 3948 . . . . . 6 (2[,)+∞) ⊆ ℝ
251recnd 11183 . . . . . 6 (⊤ → 1 ∈ ℂ)
26 rlimconst 15426 . . . . . 6 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
2724, 25, 26sylancr 587 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
28 ovexd 7392 . . . . . . . 8 (⊤ → (2[,)+∞) ∈ V)
297, 22rerpdivcld 12988 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / (θ‘𝑥)) ∈ ℝ)
30 ovexd 7392 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / 𝑥) ∈ V)
31 eqidd 2737 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))))
327recnd 11183 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
33 cxpsqrt 26058 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3432, 33syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3534oveq2d 7373 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = ((log‘𝑥) / (√‘𝑥)))
3618recnd 11183 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℂ)
3715rpsqrtcld 15296 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ+)
3837rpcnne0d 12966 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
39 divcan5 11857 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
4036, 38, 38, 39syl3anc 1371 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
41 remsqsqrt 15141 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
427, 16, 41syl2anc 584 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
4342oveq2d 7373 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4435, 40, 433eqtr2d 2782 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4544mpteq2dva 5205 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / 𝑥)))
4628, 29, 30, 31, 45offval2 7637 . . . . . . 7 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))))
4715rpne0d 12962 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ≠ 0)
4822rpcnne0d 12966 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
4919recnd 11183 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℂ)
50 dmdcan 11865 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5132, 47, 48, 49, 50syl211anc 1376 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5251mpteq2dva 5205 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
5346, 52eqtrd 2776 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
54 chto1lb 26826 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1)
5514ssriv 3948 . . . . . . . . 9 (2[,)+∞) ⊆ ℝ+
5655a1i 11 . . . . . . . 8 (⊤ → (2[,)+∞) ⊆ ℝ+)
57 1rp 12919 . . . . . . . . . . 11 1 ∈ ℝ+
58 rphalfcl 12942 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5957, 58ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
60 cxploglim 26327 . . . . . . . . . 10 ((1 / 2) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6159, 60ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0
6261a1i 11 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6356, 62rlimres2 15443 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
64 o1rlimmul 15501 . . . . . . 7 (((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6554, 63, 64sylancr 587 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6653, 65eqbrtrrd 5129 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ⇝𝑟 0)
672, 23, 27, 66rlimadd 15525 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 (1 + 0))
68 1p0e1 12277 . . . 4 (1 + 0) = 1
6967, 68breqtrdi 5146 . . 3 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 1)
70 1re 11155 . . . 4 1 ∈ ℝ
71 readdcl 11134 . . . 4 ((1 ∈ ℝ ∧ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
7270, 23, 71sylancr 587 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
73 chpcl 26473 . . . . 5 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
747, 73syl 17 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ∈ ℝ)
7574, 22rerpdivcld 12988 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ)
76 chtcl 26458 . . . . . . . 8 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
777, 76syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
7877, 19readdcld 11184 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) ∈ ℝ)
793a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
80 1le2 12362 . . . . . . . . 9 1 ≤ 2
8180a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 2)
822, 79, 7, 81, 20letrd 11312 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 𝑥)
83 chpub 26568 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
847, 82, 83syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
8574, 78, 22, 84lediv1dd 13015 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)))
8622rpcnd 12959 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℂ)
87 divdir 11838 . . . . . . 7 (((θ‘𝑥) ∈ ℂ ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
8886, 49, 48, 87syl3anc 1371 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
89 divid 11842 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9048, 89syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9190oveq1d 7372 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9288, 91eqtrd 2776 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9385, 92breqtrd 5131 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9493adantrr 715 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9586mulid2d 11173 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) = (θ‘𝑥))
96 chtlepsi 26554 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ≤ (ψ‘𝑥))
977, 96syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ≤ (ψ‘𝑥))
9895, 97eqbrtrd 5127 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) ≤ (ψ‘𝑥))
992, 74, 22lemuldivd 13006 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((1 · (θ‘𝑥)) ≤ (ψ‘𝑥) ↔ 1 ≤ ((ψ‘𝑥) / (θ‘𝑥))))
10098, 99mpbid 231 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
101100adantrr 715 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
1021, 1, 69, 72, 75, 94, 101rlimsqz2 15535 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
103102mptru 1548 1 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  Vcvv 3445  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  +crp 12915  [,)cico 13266  csqrt 15118  𝑟 crli 15367  𝑂(1)co1 15368  logclog 25910  𝑐ccxp 25911  θccht 26440  ψcchp 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-cht 26446  df-vma 26447  df-chp 26448  df-ppi 26449
This theorem is referenced by:  chpo1ub  26828  pnt2  26961
  Copyright terms: Public domain W3C validator