MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtlim Structured version   Visualization version   GIF version

Theorem chpchtlim 26627
Description: The ψ and θ functions are asymptotic to each other, so is sufficient to prove either θ(𝑥) / 𝑥𝑟 1 or ψ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpchtlim (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1

Proof of Theorem chpchtlim
StepHypRef Expression
1 1red 10976 . . 3 (⊤ → 1 ∈ ℝ)
2 1red 10976 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
3 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
4 elicopnf 13177 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
53, 4ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simplbi 498 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
76adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
8 0red 10978 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
93a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
10 2pos 12076 . . . . . . . . . . . . 13 0 < 2
1110a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 < 2)
125simprbi 497 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
138, 9, 6, 11, 12ltletrd 11135 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
146, 13elrpd 12769 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
1514adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
1615rpge0d 12776 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ≤ 𝑥)
177, 16resqrtcld 15129 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ)
1815relogcld 25778 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ)
1917, 18remulcld 11005 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℝ)
2012adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
21 chtrpcl 26324 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
227, 20, 21syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
2319, 22rerpdivcld 12803 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ)
246ssriv 3925 . . . . . 6 (2[,)+∞) ⊆ ℝ
251recnd 11003 . . . . . 6 (⊤ → 1 ∈ ℂ)
26 rlimconst 15253 . . . . . 6 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
2724, 25, 26sylancr 587 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
28 ovexd 7310 . . . . . . . 8 (⊤ → (2[,)+∞) ∈ V)
297, 22rerpdivcld 12803 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / (θ‘𝑥)) ∈ ℝ)
30 ovexd 7310 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / 𝑥) ∈ V)
31 eqidd 2739 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))))
327recnd 11003 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
33 cxpsqrt 25858 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3432, 33syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3534oveq2d 7291 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = ((log‘𝑥) / (√‘𝑥)))
3618recnd 11003 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℂ)
3715rpsqrtcld 15123 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ+)
3837rpcnne0d 12781 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
39 divcan5 11677 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
4036, 38, 38, 39syl3anc 1370 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
41 remsqsqrt 14968 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
427, 16, 41syl2anc 584 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
4342oveq2d 7291 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4435, 40, 433eqtr2d 2784 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4544mpteq2dva 5174 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / 𝑥)))
4628, 29, 30, 31, 45offval2 7553 . . . . . . 7 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))))
4715rpne0d 12777 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ≠ 0)
4822rpcnne0d 12781 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
4919recnd 11003 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℂ)
50 dmdcan 11685 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5132, 47, 48, 49, 50syl211anc 1375 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5251mpteq2dva 5174 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
5346, 52eqtrd 2778 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
54 chto1lb 26626 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1)
5514ssriv 3925 . . . . . . . . 9 (2[,)+∞) ⊆ ℝ+
5655a1i 11 . . . . . . . 8 (⊤ → (2[,)+∞) ⊆ ℝ+)
57 1rp 12734 . . . . . . . . . . 11 1 ∈ ℝ+
58 rphalfcl 12757 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5957, 58ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
60 cxploglim 26127 . . . . . . . . . 10 ((1 / 2) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6159, 60ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0
6261a1i 11 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6356, 62rlimres2 15270 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
64 o1rlimmul 15328 . . . . . . 7 (((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6554, 63, 64sylancr 587 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6653, 65eqbrtrrd 5098 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ⇝𝑟 0)
672, 23, 27, 66rlimadd 15352 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 (1 + 0))
68 1p0e1 12097 . . . 4 (1 + 0) = 1
6967, 68breqtrdi 5115 . . 3 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 1)
70 1re 10975 . . . 4 1 ∈ ℝ
71 readdcl 10954 . . . 4 ((1 ∈ ℝ ∧ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
7270, 23, 71sylancr 587 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
73 chpcl 26273 . . . . 5 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
747, 73syl 17 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ∈ ℝ)
7574, 22rerpdivcld 12803 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ)
76 chtcl 26258 . . . . . . . 8 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
777, 76syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
7877, 19readdcld 11004 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) ∈ ℝ)
793a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
80 1le2 12182 . . . . . . . . 9 1 ≤ 2
8180a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 2)
822, 79, 7, 81, 20letrd 11132 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 𝑥)
83 chpub 26368 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
847, 82, 83syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
8574, 78, 22, 84lediv1dd 12830 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)))
8622rpcnd 12774 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℂ)
87 divdir 11658 . . . . . . 7 (((θ‘𝑥) ∈ ℂ ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
8886, 49, 48, 87syl3anc 1370 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
89 divid 11662 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9048, 89syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9190oveq1d 7290 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9288, 91eqtrd 2778 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9385, 92breqtrd 5100 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9493adantrr 714 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9586mulid2d 10993 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) = (θ‘𝑥))
96 chtlepsi 26354 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ≤ (ψ‘𝑥))
977, 96syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ≤ (ψ‘𝑥))
9895, 97eqbrtrd 5096 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) ≤ (ψ‘𝑥))
992, 74, 22lemuldivd 12821 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((1 · (θ‘𝑥)) ≤ (ψ‘𝑥) ↔ 1 ≤ ((ψ‘𝑥) / (θ‘𝑥))))
10098, 99mpbid 231 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
101100adantrr 714 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
1021, 1, 69, 72, 75, 94, 101rlimsqz2 15362 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
103102mptru 1546 1 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  wne 2943  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010   / cdiv 11632  2c2 12028  +crp 12730  [,)cico 13081  csqrt 14944  𝑟 crli 15194  𝑂(1)co1 15195  logclog 25710  𝑐ccxp 25711  θccht 26240  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-cht 26246  df-vma 26247  df-chp 26248  df-ppi 26249
This theorem is referenced by:  chpo1ub  26628  pnt2  26761
  Copyright terms: Public domain W3C validator