MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtlim Structured version   Visualization version   GIF version

Theorem chpchtlim 27523
Description: The ψ and θ functions are asymptotic to each other, so is sufficient to prove either θ(𝑥) / 𝑥𝑟 1 or ψ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpchtlim (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1

Proof of Theorem chpchtlim
StepHypRef Expression
1 1red 11262 . . 3 (⊤ → 1 ∈ ℝ)
2 1red 11262 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
3 2re 12340 . . . . . . . . . . 11 2 ∈ ℝ
4 elicopnf 13485 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
53, 4ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simplbi 497 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
76adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
8 0red 11264 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
93a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
10 2pos 12369 . . . . . . . . . . . . 13 0 < 2
1110a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 < 2)
125simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
138, 9, 6, 11, 12ltletrd 11421 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
146, 13elrpd 13074 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
1514adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
1615rpge0d 13081 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ≤ 𝑥)
177, 16resqrtcld 15456 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ)
1815relogcld 26665 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ)
1917, 18remulcld 11291 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℝ)
2012adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
21 chtrpcl 27218 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
227, 20, 21syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
2319, 22rerpdivcld 13108 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ)
246ssriv 3987 . . . . . 6 (2[,)+∞) ⊆ ℝ
251recnd 11289 . . . . . 6 (⊤ → 1 ∈ ℂ)
26 rlimconst 15580 . . . . . 6 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
2724, 25, 26sylancr 587 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
28 ovexd 7466 . . . . . . . 8 (⊤ → (2[,)+∞) ∈ V)
297, 22rerpdivcld 13108 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / (θ‘𝑥)) ∈ ℝ)
30 ovexd 7466 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / 𝑥) ∈ V)
31 eqidd 2738 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))))
327recnd 11289 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
33 cxpsqrt 26745 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3432, 33syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3534oveq2d 7447 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = ((log‘𝑥) / (√‘𝑥)))
3618recnd 11289 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℂ)
3715rpsqrtcld 15450 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ+)
3837rpcnne0d 13086 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
39 divcan5 11969 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
4036, 38, 38, 39syl3anc 1373 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
41 remsqsqrt 15295 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
427, 16, 41syl2anc 584 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
4342oveq2d 7447 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4435, 40, 433eqtr2d 2783 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4544mpteq2dva 5242 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / 𝑥)))
4628, 29, 30, 31, 45offval2 7717 . . . . . . 7 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))))
4715rpne0d 13082 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ≠ 0)
4822rpcnne0d 13086 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
4919recnd 11289 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℂ)
50 dmdcan 11977 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5132, 47, 48, 49, 50syl211anc 1378 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5251mpteq2dva 5242 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
5346, 52eqtrd 2777 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
54 chto1lb 27522 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1)
5514ssriv 3987 . . . . . . . . 9 (2[,)+∞) ⊆ ℝ+
5655a1i 11 . . . . . . . 8 (⊤ → (2[,)+∞) ⊆ ℝ+)
57 1rp 13038 . . . . . . . . . . 11 1 ∈ ℝ+
58 rphalfcl 13062 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5957, 58ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
60 cxploglim 27021 . . . . . . . . . 10 ((1 / 2) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6159, 60ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0
6261a1i 11 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6356, 62rlimres2 15597 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
64 o1rlimmul 15655 . . . . . . 7 (((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6554, 63, 64sylancr 587 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6653, 65eqbrtrrd 5167 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ⇝𝑟 0)
672, 23, 27, 66rlimadd 15679 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 (1 + 0))
68 1p0e1 12390 . . . 4 (1 + 0) = 1
6967, 68breqtrdi 5184 . . 3 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 1)
70 1re 11261 . . . 4 1 ∈ ℝ
71 readdcl 11238 . . . 4 ((1 ∈ ℝ ∧ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
7270, 23, 71sylancr 587 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
73 chpcl 27167 . . . . 5 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
747, 73syl 17 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ∈ ℝ)
7574, 22rerpdivcld 13108 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ)
76 chtcl 27152 . . . . . . . 8 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
777, 76syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
7877, 19readdcld 11290 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) ∈ ℝ)
793a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
80 1le2 12475 . . . . . . . . 9 1 ≤ 2
8180a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 2)
822, 79, 7, 81, 20letrd 11418 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 𝑥)
83 chpub 27264 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
847, 82, 83syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
8574, 78, 22, 84lediv1dd 13135 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)))
8622rpcnd 13079 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℂ)
87 divdir 11947 . . . . . . 7 (((θ‘𝑥) ∈ ℂ ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
8886, 49, 48, 87syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
89 divid 11953 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9048, 89syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9190oveq1d 7446 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9288, 91eqtrd 2777 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9385, 92breqtrd 5169 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9493adantrr 717 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9586mullidd 11279 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) = (θ‘𝑥))
96 chtlepsi 27250 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ≤ (ψ‘𝑥))
977, 96syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ≤ (ψ‘𝑥))
9895, 97eqbrtrd 5165 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) ≤ (ψ‘𝑥))
992, 74, 22lemuldivd 13126 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((1 · (θ‘𝑥)) ≤ (ψ‘𝑥) ↔ 1 ≤ ((ψ‘𝑥) / (θ‘𝑥))))
10098, 99mpbid 232 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
101100adantrr 717 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
1021, 1, 69, 72, 75, 94, 101rlimsqz2 15687 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
103102mptru 1547 1 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296   / cdiv 11920  2c2 12321  +crp 13034  [,)cico 13389  csqrt 15272  𝑟 crli 15521  𝑂(1)co1 15522  logclog 26596  𝑐ccxp 26597  θccht 27134  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-o1 15526  df-lo1 15527  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-cht 27140  df-vma 27141  df-chp 27142  df-ppi 27143
This theorem is referenced by:  chpo1ub  27524  pnt2  27657
  Copyright terms: Public domain W3C validator