HomeHome Metamath Proof Explorer
Theorem List (p. 342 of 452)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28699)
  Hilbert Space Explorer  Hilbert Space Explorer
(28700-30222)
  Users' Mathboxes  Users' Mathboxes
(30223-45187)
 

Theorem List for Metamath Proof Explorer - 34101-34200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-nnfnth 34101 A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023.)
¬ 𝜑       Ⅎ'𝑥𝜑
 
Theorembj-nnfim1 34102 A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
 
Theorembj-nnfim2 34103 A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑𝜓)))
 
Theorembj-nnfim 34104 Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnfimd 34105 Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfan 34106 Nonfreeness in both conjuncts implies nonfreeness in the conjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of conjunction in terms of implication and negation, so using bj-nnfim 34104, bj-nnfnt 34098 and bj-nnfbi 34086, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnfand 34107 Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 34106, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 34106 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 34107 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfor 34108 Nonfreeness in both disjuncts implies nonfreeness in the disjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of disjunction in terms of implication and negation, so using bj-nnfim 34104, bj-nnfnt 34098 and bj-nnfbi 34086, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnford 34109 Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor 34108 and bj-nnfand 34107. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfbit 34110 Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnfbid 34111 Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfv 34112* A non-occurring variable is nonfree in a formula. (Contributed by BJ, 28-Jul-2023.)
Ⅎ'𝑥𝜑
 
Theorembj-nnf-alrim 34113 Proof of the closed form of alrimi 2215 from modalK (compare alrimiv 1929). See also bj-alrim 34054. Actually, most proofs between 19.3t 2203 and 2sbbid 2249 could be proved without ax-12 2179. (Contributed by BJ, 20-Aug-2023.)
(Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-nnf-exlim 34114 Proof of the closed form of exlimi 2219 from modalK (compare exlimiv 1932). See also bj-sylget2 33982. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓)))
 
Theorembj-dfnnf3 34115 Alternate definition of nonfreeness when sp 2184 is available. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1786. (Proof modification is discouraged.)
(Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
 
Theorembj-nfnnfTEMP 34116 New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2184. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1786 except via df-nf 1786 directly. (Proof modification is discouraged.)
(Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑)
 
Theorembj-nnfa1 34117 See nfa1 2156. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
Ⅎ'𝑥𝑥𝜑
 
Theorembj-nnfe1 34118 See nfe1 2155. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
Ⅎ'𝑥𝑥𝜑
 
Theorembj-19.12 34119 See 19.12 2348. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2170 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1786 or df-bj-nnf 34085, directly or indirectly. (Proof modification is discouraged.)
(∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theorembj-nnflemaa 34120 One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt 34042. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
 
Theorembj-nnflemee 34121 One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(∃𝑦𝜑𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝜑))
 
Theorembj-nnflemae 34122 One of four lemmas for nonfreeness: antecedent expressed with universal quantifier and consequent expressed with existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦𝑥𝜑))
 
Theorembj-nnflemea 34123 One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(∃𝑦𝜑𝜑) → (∃𝑦𝑥𝜑 → ∀𝑥𝜑))
 
Theorembj-nnfalt 34124 See nfal 2344 and bj-nfalt 34072. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦𝑥𝜑)
 
Theorembj-nnfext 34125 See nfex 2345 and bj-nfext 34073. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦𝑥𝜑)
 
Theorembj-stdpc5t 34126 Alias of bj-nnf-alrim 34113 for labeling consistency (a standard predicate calculus axiom). Closed form of stdpc5 2210 proved from modalK (obsoleting stdpc5v 1940). (Contributed by BJ, 2-Dec-2023.) Use bj-nnf-alrim 34113 instead. (New usaged is discouraged.)
(Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-19.21t 34127 Statement 19.21t 2208 proved from modalK (obsoleting 19.21v 1941). (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorembj-19.23t 34128 Statement 19.23t 2212 proved from modalK (obsoleting 19.23v 1944). (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorembj-19.36im 34129 One direction of 19.36 2234 from the same axioms as 19.36imv 1947. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓)))
 
Theorembj-19.37im 34130 One direction of 19.37 2236 from the same axioms as 19.37imv 1949. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓)))
 
Theorembj-19.42t 34131 Closed form of 19.42 2240 from the same axioms as 19.42v 1955. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)))
 
Theorembj-19.41t 34132 Closed form of 19.41 2239 from the same axioms as 19.41v 1951. The same is doable with 19.27 2231, 19.28 2232, 19.31 2238, 19.32 2237, 19.44 2241, 19.45 2242. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorembj-sbft 34133 Version of sbft 2272 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.)
(Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑𝜑))
 
20.15.4.11  Adding ax-13
 
Theorembj-axc10 34134 Alternate (shorter) proof of axc10 2405. One can prove a version with DV (𝑥, 𝑦) without ax-13 2392, by using ax6ev 1973 instead of ax6e 2403. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theorembj-alequex 34135 A fol lemma. See alequexv 2008 for a version with a disjoint variable condition requiring fewer axioms. Can be used to reduce the proof of spimt 2406 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
 
Theorembj-spimt2 34136 A step in the proof of spimt 2406. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))
 
Theorembj-cbv3ta 34137 Closed form of cbv3 2417. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦(∃𝑥𝜓𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-cbv3tb 34138 Closed form of cbv3 2417. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦𝑥𝜓 ∧ ∀𝑥𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-hbsb3t 34139 A theorem close to a closed form of hbsb3 2528. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
 
Theorembj-hbsb3 34140 Shorter proof of hbsb3 2528. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1t 34141 A theorem close to a closed form of nfs1 2529. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1t2 34142 A theorem close to a closed form of nfs1 2529. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1 34143 Shorter proof of nfs1 2529 (three essential steps instead of four). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
𝑦𝜑       𝑥[𝑦 / 𝑥]𝜑
 
20.15.4.12  Removing dependencies on ax-13 (and ax-11)

It is known that ax-13 2392 is logically redundant (see ax13w 2141 and the head comment of the section "Logical redundancy of ax-10--13"). More precisely, one can remove dependency on ax-13 2392 from every theorem in set.mm which is totally unbundled (i.e., has disjoint variable conditions on all setvar variables). Indeed, start with the existing proof, and replace any occurrence of ax-13 2392 with ax13w 2141.

This section is an experiment to see in practice if (partially) unbundled versions of existing theorems can be proved more efficiently without ax-13 2392 (and using ax6v 1972 / ax6ev 1973 instead of ax-6 1971 / ax6e 2403, as is currently done).

One reason to be optimistic is that the first few utility theorems using ax-13 2392 (roughly 200 of them) are then used mainly with dummy variables, which one can assume distinct from any other, so that the unbundled versions of the utility theorems suffice.

In this section, we prove versions of theorems in the main part with dv conditions and not requiring ax-13 2392, labeled bj-xxxv (we follow the proof of xxx but use ax6v 1972 and ax6ev 1973 instead of ax-6 1971 and ax6e 2403, and ax-5 1912 instead of ax13v 2393; shorter proofs may be possible). When no additional dv condition is required, we label it bj-xxx.

It is important to keep all the bundled theorems already in set.mm, but one may also add the (partially) unbundled versions which dipense with ax-13 2392, so as to remove dependencies on ax-13 2392 from many existing theorems.

UPDATE: it turns out that several theorems of the form bj-xxxv, or minor variations, are already in set.mm with label xxxw.

It is also possible to remove dependencies on ax-11 2162, typically by replacing a nonfree hypothesis with a disjoint variable condition (see cbv3v2 2245 and following theorems).

 
Theorembj-axc10v 34144* Version of axc10 2405 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theorembj-spimtv 34145* Version of spimt 2406 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
 
Theorembj-cbv3hv2 34146* Version of cbv3h 2426 with two disjoint variable conditions, which does not require ax-11 2162 nor ax-13 2392. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theorembj-cbv1hv 34147* Version of cbv1h 2427 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theorembj-cbv2hv 34148* Version of cbv2h 2428 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbv2v 34149* Version of cbv2 2425 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvaldv 34150* Version of cbvald 2430 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvexdv 34151* Version of cbvexd 2431 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theorembj-cbval2vv 34152* Version of cbval2vv 2437 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theorembj-cbvex2vv 34153* Version of cbvex2vv 2438 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theorembj-cbvaldvav 34154* Version of cbvaldva 2432 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvexdvav 34155* Version of cbvexdva 2433 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theorembj-cbvex4vv 34156* Version of cbvex4v 2439 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theorembj-equsalhv 34157* Version of equsalh 2444 with a disjoint variable condition, which does not require ax-13 2392. Remark: this is the same as equsalhw 2301. TODO: delete after moving the following paragraph somewhere.

Remarks: equsexvw 2012 has been moved to Main; the theorem ax13lem2 2396 has a dv version which is a simple consequence of ax5e 1914; the theorems nfeqf2 2397, dveeq2 2398, nfeqf1 2399, dveeq1 2400, nfeqf 2401, axc9 2402, ax13 2395, have dv versions which are simple consequences of ax-5 1912. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theorembj-axc11nv 34158* Version of axc11n 2450 with a disjoint variable condition; instance of aevlem 2061. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theorembj-aecomsv 34159* Version of aecoms 2452 with a disjoint variable condition, provable from Tarski's FOL. The corresponding version of naecoms 2453 should not be very useful since ¬ ∀𝑥𝑥 = 𝑦, DV (𝑥, 𝑦) is true when the universe has at least two objects (see dtru 5259). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦𝜑)       (∀𝑦 𝑦 = 𝑥𝜑)
 
Theorembj-axc11v 34160* Version of axc11 2454 with a disjoint variable condition, which does not require ax-13 2392 nor ax-10 2146. Remark: the following theorems (hbae 2455, nfae 2457, hbnae 2456, nfnae 2458, hbnaes 2459) would need to be totally unbundled to be proved without ax-13 2392, hence would be simple consequences of ax-5 1912 or nfv 1916. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theorembj-drnf2v 34161* Version of drnf2 2468 with a disjoint variable condition, which does not require ax-10 2146, ax-11 2162, ax-12 2179, ax-13 2392. Instance of nfbidv 1924. Note that the version of axc15 2446 with a disjoint variable condition is actually ax12v2 2181 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
 
Theorembj-equs45fv 34162* Version of equs45f 2484 with a disjoint variable condition, which does not require ax-13 2392. Note that the version of equs5 2485 with a disjoint variable condition is actually sb56 2279 (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
𝑦𝜑       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theorembj-hbs1 34163* Version of hbsb2 2523 with a disjoint variable condition, which does not require ax-13 2392, and removal of ax-13 2392 from hbs1 2276. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1v 34164* Version of nfsb2 2524 with a disjoint variable condition, which does not require ax-13 2392, and removal of ax-13 2392 from nfs1v 2161. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
𝑥[𝑦 / 𝑥]𝜑
 
Theorembj-hbsb2av 34165* Version of hbsb2a 2525 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-hbsb3v 34166* Version of hbsb3 2528 with a disjoint variable condition, which does not require ax-13 2392. (Remark: the unbundled version of nfs1 2529 is given by bj-nfs1v 34164.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfsab1 34167* Remove dependency on ax-13 2392 from nfsab1 2811. UPDATE / TODO: nfsab1 2811 does not use ax-13 2392 either anymore; bj-nfsab1 34167 is shorter than nfsab1 2811 but uses ax-12 2179. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
𝑥 𝑦 ∈ {𝑥𝜑}
 
Theorembj-dtru 34168* Remove dependency on ax-13 2392 from dtru 5259. (Contributed by BJ, 31-May-2019.)

TODO: This predates the removal of ax-13 2392 in dtru 5259. But actually, sn-dtru 39285 is better than either, so move it to Main with sn-el 39284 (and determine whether bj-dtru 34168 should be kept as ALT or deleted).

(Proof modification is discouraged.) (New usage is discouraged.)

¬ ∀𝑥 𝑥 = 𝑦
 
Theorembj-dtrucor2v 34169* Version of dtrucor2 5261 with a disjoint variable condition, which does not require ax-13 2392 (nor ax-4 1811, ax-5 1912, ax-7 2016, ax-12 2179). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
(𝑥 = 𝑦𝑥𝑦)       (𝜑 ∧ ¬ 𝜑)
 
20.15.4.13  Distinct var metavariables

The closed formula 𝑥𝑦𝑥 = 𝑦 approximately means that the var metavariables 𝑥 and 𝑦 represent the same variable vi. In a domain with at most one object, however, this formula is always true, hence the "approximately" in the previous sentence.

 
Theorembj-hbaeb2 34170 Biconditional version of a form of hbae 2455 with commuted quantifiers, not requiring ax-11 2162. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑧 𝑥 = 𝑦)
 
Theorembj-hbaeb 34171 Biconditional version of hbae 2455. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧𝑥 𝑥 = 𝑦)
 
Theorembj-hbnaeb 34172 Biconditional version of hbnae 2456 (to replace it?). (Contributed by BJ, 6-Oct-2018.)
(¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
 
Theorembj-dvv 34173 A special instance of bj-hbaeb2 34170. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑦 𝑥 = 𝑦)
 
20.15.4.14  Around ~ equsal

As a rule of thumb, if a theorem of the form (𝜑𝜓) ⇒ (𝜒𝜃) is in the database, and the "more precise" theorems (𝜑𝜓) ⇒ (𝜒𝜃) and (𝜓𝜑) ⇒ (𝜃𝜒) also hold (see bj-bisym 33951), then they should be added to the database. The present case is similar. Similar additions can be done regarding equsex 2442 (and equsalh 2444 and equsexh 2445). Even if only one of these two theorems holds, it should be added to the database.

 
Theorembj-equsal1t 34174 Duplication of wl-equsal1t 34858, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2008 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 34859 is also interesting. (Contributed by BJ, 6-Oct-2018.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
 
Theorembj-equsal1ti 34175 Inference associated with bj-equsal1t 34174. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
 
Theorembj-equsal1 34176 One direction of equsal 2441. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)
 
Theorembj-equsal2 34177 One direction of equsal 2441. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓))
 
Theorembj-equsal 34178 Shorter proof of equsal 2441. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2441, but "min */exc equsal" is ok. (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
20.15.4.15  Some Principia Mathematica proofs

References are made to the second edition (1927, reprinted 1963) of Principia Mathematica, Vol. 1. Theorems are referred to in the form "PM*xx.xx".

 
Theoremstdpc5t 34179 Closed form of stdpc5 2210. (Possible to place it before 19.21t 2208 and use it to prove 19.21t 2208). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-stdpc5 34180 More direct proof of stdpc5 2210. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theorem2stdpc5 34181 A double stdpc5 2210 (one direction of PM*11.3). See also 2stdpc4 2076 and 19.21vv 40940. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) → (𝜑 → ∀𝑥𝑦𝜓))
 
Theorembj-19.21t0 34182 Proof of 19.21t 2208 from stdpc5t 34179. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theoremexlimii 34183 Inference associated with exlimi 2219. Inferring a theorem when it is implied by an antecedent which may be true. (Contributed by BJ, 15-Sep-2018.)
𝑥𝜓    &   (𝜑𝜓)    &   𝑥𝜑       𝜓
 
Theoremax11-pm 34184 Proof of ax-11 2162 similar to PM's proof of alcom 2164 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 34188. Axiom ax-11 2162 is used in the proof only through nfa2 2178. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theoremax6er 34185 Commuted form of ax6e 2403. (Could be placed right after ax6e 2403). (Contributed by BJ, 15-Sep-2018.)
𝑥 𝑦 = 𝑥
 
Theoremexlimiieq1 34186 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremexlimiieq2 34187 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 15-Sep-2018.) (Revised by BJ, 30-Sep-2018.)
𝑦𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremax11-pm2 34188* Proof of ax-11 2162 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2164 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2162 is used in the proof only through nfal 2344, nfsb 2567, sbal 2167, sb8 2561. See also ax11-pm 34184. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
20.15.4.16  Alternate definition of substitution
 
Theorembj-sbsb 34189 Biconditional showing two possible (dual) definitions of substitution df-sb 2071 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
(((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
Theorembj-dfsb2 34190 Alternate (dual) definition of substitution df-sb 2071 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
20.15.4.17  Lemmas for substitution
 
Theorembj-sbf3 34191 Substitution has no effect on a bound variable (existential quantifier case); see sbf2 2274. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-sbf4 34192 Substitution has no effect on a bound variable (nonfreeness case); see sbf2 2274. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜑)
 
Theorembj-sbnf 34193* Move nonfree predicate in and out of substitution; see sbal 2167 and sbex 2290. (Contributed by BJ, 2-May-2019.)
([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
 
20.15.4.18  Existential uniqueness
 
Theorembj-eu3f 34194* Version of eu3v 2656 where the disjoint variable condition is replaced with a nonfreeness hypothesis. This is a "backup" of a theorem that used to be in the main part with label "eu3" and was deprecated in favor of eu3v 2656. (Contributed by NM, 8-Jul-1994.) (Proof shortened by BJ, 31-May-2019.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
20.15.4.19  First-order logic: miscellaneous

Miscellaneous theorems of first-order logic.

 
Theorembj-sblem1 34195* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜒)))
 
Theorembj-sblem2 34196* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜒𝜓)) → ((∃𝑥𝜑𝜒) → ∀𝑥(𝜑𝜓)))
 
Theorembj-sblem 34197* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜒)))
 
Theorembj-sbievw1 34198* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑𝜓))
 
Theorembj-sbievw2 34199* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜓𝜑) → (𝜓 → [𝑦 / 𝑥]𝜑))
 
Theorembj-sbievw 34200* Lemma for substitution. Closed form of equsalvw 2011 and sbievw 2104. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45187
  Copyright terms: Public domain < Previous  Next >