Home | Metamath
Proof Explorer Theorem List (p. 342 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-succf 34101 | Define the successor function. See brsuccf 34170 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
⊢ Succ = (Cup ∘ ( I ⊗ Singleton)) | ||
Definition | df-apply 34102 | Define the application function. See brapply 34167 for its value. (Contributed by Scott Fenton, 12-Apr-2014.) |
⊢ Apply = (( Bigcup ∘ Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))) | ||
Definition | df-funpart 34103 | Define the functional part of a class 𝐹. This is the maximal part of 𝐹 that is a function. See funpartfun 34172 and funpartfv 34174 for the meaning of this statement. (Contributed by Scott Fenton, 16-Apr-2014.) |
⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) | ||
Definition | df-fullfun 34104 | Define the full function over 𝐹. This is a function with domain V that always agrees with 𝐹 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | ||
Definition | df-ub 34105 | Define the upper bound relationship functor. See brub 34183 for value. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) | ||
Definition | df-lb 34106 | Define the lower bound relationship functor. See brlb 34184 for value. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ LB𝑅 = UB◡𝑅 | ||
Theorem | txpss3v 34107 | A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) | ||
Theorem | txprel 34108 | A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ Rel (𝐴 ⊗ 𝐵) | ||
Theorem | brtxp 34109 | Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 34107, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (𝑋(𝐴 ⊗ 𝐵)〈𝑌, 𝑍〉 ↔ (𝑋𝐴𝑌 ∧ 𝑋𝐵𝑍)) | ||
Theorem | brtxp2 34110* | The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) | ||
Theorem | dfpprod2 34111 | Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) | ||
Theorem | pprodcnveq 34112 | A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ pprod(𝑅, 𝑆) = ◡pprod(◡𝑅, ◡𝑆) | ||
Theorem | pprodss4v 34113 | The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V)) | ||
Theorem | brpprod 34114 | Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 34113, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V & ⊢ 𝑊 ∈ V ⇒ ⊢ (〈𝑋, 𝑌〉pprod(𝐴, 𝐵)〈𝑍, 𝑊〉 ↔ (𝑋𝐴𝑍 ∧ 𝑌𝐵𝑊)) | ||
Theorem | brpprod3a 34115* | Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) | ||
Theorem | brpprod3b 34116* | Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) | ||
Theorem | relsset 34117 | The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ Rel SSet | ||
Theorem | brsset 34118 | For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | idsset 34119 | I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ I = ( SSet ∩ ◡ SSet ) | ||
Theorem | eltrans 34120 | Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) | ||
Theorem | dfon3 34121 | A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.) |
⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | ||
Theorem | dfon4 34122 | Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) | ||
Theorem | brtxpsd 34123* | Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | ||
Theorem | brtxpsd2 34124* | Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 ⇒ ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) | ||
Theorem | brtxpsd3 34125* | A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 & ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) | ||
Theorem | relbigcup 34126 | The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Rel Bigcup | ||
Theorem | brbigcup 34127 | Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) | ||
Theorem | dfbigcup2 34128 | Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | ||
Theorem | fobigcup 34129 | Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Bigcup :V–onto→V | ||
Theorem | fnbigcup 34130 | Bigcup is a function over the universal class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Bigcup Fn V | ||
Theorem | fvbigcup 34131 | For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 | ||
Theorem | elfix 34132 | Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
Theorem | elfix2 34133 | Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
Theorem | dffix2 34134 | The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = ran (𝐴 ∩ I ) | ||
Theorem | fixssdm 34135 | The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ dom 𝐴 | ||
Theorem | fixssrn 34136 | The fixpoints of a class are a subset of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ ran 𝐴 | ||
Theorem | fixcnv 34137 | The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = Fix ◡𝐴 | ||
Theorem | fixun 34138 | The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) | ||
Theorem | ellimits 34139 | Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) | ||
Theorem | limitssson 34140 | The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Limits ⊆ On | ||
Theorem | dfom5b 34141 | A quantifier-free definition of ω that does not depend on ax-inf 9326. (Note: label was changed from dfom5 9338 to dfom5b 34141 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ ω = (On ∩ ∩ Limits ) | ||
Theorem | sscoid 34142 | A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.) |
⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴 ∧ 𝐴 ⊆ 𝐵)) | ||
Theorem | dffun10 34143 | Another potential definition of functionality. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.) |
⊢ (Fun 𝐹 ↔ 𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹)))) | ||
Theorem | elfuns 34144 | Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ Funs ↔ Fun 𝐹) | ||
Theorem | elfunsg 34145 | Closed form of elfuns 34144. (Contributed by Scott Fenton, 2-May-2014.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) | ||
Theorem | brsingle 34146 | The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) | ||
Theorem | elsingles 34147* | Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | fnsingle 34148 | The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Singleton Fn V | ||
Theorem | fvsingle 34149 | The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
⊢ (Singleton‘𝐴) = {𝐴} | ||
Theorem | dfsingles2 34150* | Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Singletons = {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} | ||
Theorem | snelsingles 34151 | A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ Singletons | ||
Theorem | dfiota3 34152 | A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (℩𝑥𝜑) = ∪ ∪ ({{𝑥 ∣ 𝜑}} ∩ Singletons ) | ||
Theorem | dffv5 34153 | Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) | ||
Theorem | unisnif 34154 | Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) | ||
Theorem | brimage 34155 | Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) | ||
Theorem | brimageg 34156 | Closed form of brimage 34155. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) | ||
Theorem | funimage 34157 | Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Fun Image𝐴 | ||
Theorem | fnimage 34158* | Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} | ||
Theorem | imageval 34159* | The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) | ||
Theorem | fvimage 34160 | Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 “ 𝐴) ∈ 𝑊) → (Image𝑅‘𝐴) = (𝑅 “ 𝐴)) | ||
Theorem | brcart 34161 | Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) | ||
Theorem | brdomain 34162 | Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) | ||
Theorem | brrange 34163 | Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) | ||
Theorem | brdomaing 34164 | Closed form of brdomain 34162. (Contributed by Scott Fenton, 2-May-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | ||
Theorem | brrangeg 34165 | Closed form of brrange 34163. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) | ||
Theorem | brimg 34166 | Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Img𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) | ||
Theorem | brapply 34167 | Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Apply𝐶 ↔ 𝐶 = (𝐴‘𝐵)) | ||
Theorem | brcup 34168 | Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cup𝐶 ↔ 𝐶 = (𝐴 ∪ 𝐵)) | ||
Theorem | brcap 34169 | Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cap𝐶 ↔ 𝐶 = (𝐴 ∩ 𝐵)) | ||
Theorem | brsuccf 34170 | Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) | ||
Theorem | funpartlem 34171* | Lemma for funpartfun 34172. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.) |
⊢ (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}) | ||
Theorem | funpartfun 34172 | The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ Fun Funpart𝐹 | ||
Theorem | funpartss 34173 | The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Funpart𝐹 ⊆ 𝐹 | ||
Theorem | funpartfv 34174 | The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (Funpart𝐹‘𝐴) = (𝐹‘𝐴) | ||
Theorem | fullfunfnv 34175 | The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ FullFun𝐹 Fn V | ||
Theorem | fullfunfv 34176 | The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | ||
Theorem | brfullfun 34177 | A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) | ||
Theorem | brrestrict 34178 | Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Restrict𝐶 ↔ 𝐶 = (𝐴 ↾ 𝐵)) | ||
Theorem | dfrecs2 34179 | A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.) |
⊢ recs(𝐹) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) | ||
Theorem | dfrdg4 34180 | A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ rec(𝐹, 𝐴) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (((V × {∅}) × {∪ {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) | ||
Theorem | dfint3 34181 | Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) | ||
Theorem | imagesset 34182 | The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.) |
⊢ Image◡ SSet ⊆ SSet | ||
Theorem | brub 34183* | Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | ||
Theorem | brlb 34184* | Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) | ||
Syntax | caltop 34185 | Declare the syntax for an alternate ordered pair. |
class ⟪𝐴, 𝐵⟫ | ||
Syntax | caltxp 34186 | Declare the syntax for an alternate Cartesian product. |
class (𝐴 ×× 𝐵) | ||
Definition | df-altop 34187 | An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth 34198), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | ||
Definition | df-altxp 34188* | Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | ||
Theorem | altopex 34189 | Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ⟪𝐴, 𝐵⟫ ∈ V | ||
Theorem | altopthsn 34190 | Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | ||
Theorem | altopeq12 34191 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) | ||
Theorem | altopeq1 34192 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | ||
Theorem | altopeq2 34193 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) | ||
Theorem | altopth1 34194 | Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶)) | ||
Theorem | altopth2 34195 | Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) | ||
Theorem | altopthg 34196 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | altopthbg 34197 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | altopth 34198 | The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 5385), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthb 34199 | Alternate ordered pair theorem with different sethood requirements. See altopth 34198 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthc 34200 | Alternate ordered pair theorem with different sethood requirements. See altopth 34198 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |