HomeHome Metamath Proof Explorer
Theorem List (p. 342 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 34101-34200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcofcutr 34101* If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐴 is cofinal with ( L ‘𝑋) and 𝐵 is coinitial with ( R ‘𝑋). Theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.)
((𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤𝐵 𝑤 ≤s 𝑧))
 
Theoremcofcutrtime 34102* If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.)
(((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧))
 
20.9.32  Surreal numbers: Induction and recursion on one variable
 
Syntaxcnorec 34103 Declare the syntax for surreal recursion of one variable.
class norec (𝐹)
 
Definitiondf-norec 34104* Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.)
norec (𝐹) = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹)
 
Theoremlrrecval 34105* The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship 𝑅 that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}       ((𝐴 No 𝐵 No ) → (𝐴𝑅𝐵𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))))
 
Theoremlrrecval2 34106* Next, we establish an alternate expression for 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}       ((𝐴 No 𝐵 No ) → (𝐴𝑅𝐵 ↔ ( bday 𝐴) ∈ ( bday 𝐵)))
 
Theoremlrrecpo 34107* Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}       𝑅 Po No
 
Theoremlrrecse 34108* Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}       𝑅 Se No
 
Theoremlrrecfr 34109* Now we show that 𝑅 is founded over No . (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}       𝑅 Fr No
 
Theoremlrrecpred 34110* Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}       (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
 
Theoremnoinds 34111* Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑥 No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓𝜑))       (𝐴 No 𝜒)
 
Theoremnorecfn 34112 Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024.)
𝐹 = norec (𝐺)       𝐹 Fn No
 
Theoremnorecov 34113 Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.)
𝐹 = norec (𝐺)       (𝐴 No → (𝐹𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))))
 
20.9.33  Surreal numbers: Induction and recursion on two variables
 
Syntaxcnorec2 34114 Declare the syntax for surreal recursion on two arguments.
class norec2 (𝐹)
 
Definitiondf-norec2 34115* Define surreal recursion on two variables. This function is key to the development of most of surreal numbers. (Contributed by Scott Fenton, 20-Aug-2024.)
norec2 (𝐹) = frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐹)
 
Theoremnoxpordpo 34116* To get through most of the textbook defintions in surreal numbers we will need recursion on two variables. This set of theorems sets up the preconditions for double recursion. This theorem establishes the partial ordering. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       𝑆 Po ( No × No )
 
Theoremnoxpordfr 34117* Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       𝑆 Fr ( No × No )
 
Theoremnoxpordse 34118* Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       𝑆 Se ( No × No )
 
Theoremnoxpordpred 34119* Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       ((𝐴 No 𝐵 No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
 
Theoremno2indslem 34120* Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}    &   𝑆 = {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st𝑐)𝑅(1st𝑑) ∨ (1st𝑐) = (1st𝑑)) ∧ ((2nd𝑐)𝑅(2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑)) ∧ 𝑐𝑑))}    &   (𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑤 → (𝜓𝜒))    &   (𝑥 = 𝑧 → (𝜃𝜒))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   (𝑦 = 𝐵 → (𝜏𝜂))    &   ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))       ((𝐴 No 𝐵 No ) → 𝜂)
 
Theoremno2inds 34121* Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.)
(𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑤 → (𝜓𝜒))    &   (𝑥 = 𝑧 → (𝜃𝜒))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   (𝑦 = 𝐵 → (𝜏𝜂))    &   ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))       ((𝐴 No 𝐵 No ) → 𝜂)
 
Theoremnorec2fn 34122 The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.)
𝐹 = norec2 (𝐺)       𝐹 Fn ( No × No )
 
Theoremnorec2ov 34123 The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024.)
𝐹 = norec2 (𝐺)       ((𝐴 No 𝐵 No ) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))))
 
Theoremno3inds 34124* Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.)
(𝑎 = 𝑑 → (𝜑𝜓))    &   (𝑏 = 𝑒 → (𝜓𝜒))    &   (𝑐 = 𝑓 → (𝜒𝜃))    &   (𝑎 = 𝑑 → (𝜏𝜃))    &   (𝑏 = 𝑒 → (𝜂𝜏))    &   (𝑏 = 𝑒 → (𝜁𝜃))    &   (𝑐 = 𝑓 → (𝜎𝜏))    &   (𝑎 = 𝑋 → (𝜑𝜌))    &   (𝑏 = 𝑌 → (𝜌𝜇))    &   (𝑐 = 𝑍 → (𝜇𝜆))    &   ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑))       ((𝑋 No 𝑌 No 𝑍 No ) → 𝜆)
 
20.9.34  Surreal numbers - addition, negation, and subtraction
 
Syntaxcadds 34125 Declare the syntax for surreal addition.
class +s
 
Syntaxcnegs 34126 Declare the syntax for surreal negation.
class -us
 
Syntaxcsubs 34127 Declare the syntax for surreal subtraction.
class -s
 
Definitiondf-adds 34128* Define surreal addition. This is the first of the field operations on the surreals. Definition from [Conway] p. 5. Definition from [Gonshor] p. 13. (Contributed by Scott Fenton, 20-Aug-2024.)
+s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)}))))
 
Definitiondf-negs 34129* Define surreal negation. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.)
-us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
 
Definitiondf-subs 34130* Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024.)
-s = (𝑥 No , 𝑦 No ↦ (𝑥 +s ( -us ‘𝑦)))
 
Theoremnegsfn 34131 Surreal negation is a function over surreals. (Contributed by Scott Fenton, 20-Aug-2024.)
-us Fn No
 
Theoremnegsval 34132 The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.)
(𝐴 No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
 
Theoremnegs0s 34133 Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.)
( -us ‘ 0s ) = 0s
 
Theoremaddsfn 34134 Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.)
+s Fn ( No × No )
 
Theoremaddsval 34135* The value of surreal addition. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.)
((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)})))
 
Theoremaddsid1 34136 Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
(𝐴 No → (𝐴 +s 0s ) = 𝐴)
 
Theoremaddsid1d 34137 Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
(𝜑𝐴 No )       (𝜑 → (𝐴 +s 0s ) = 𝐴)
 
Theoremaddscom 34138 Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))
 
Theoremaddscomd 34139 Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))
 
Theoremaddscllem1 34140 Lemma for addscl (future) Alternate expression for surreal addition. (Contributed by Scott Fenton, 23-Aug-2024.)
((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))))
 
20.9.35  Quantifier-free definitions
 
Syntaxctxp 34141 Declare the syntax for tail Cartesian product.
class (𝐴𝐵)
 
Syntaxcpprod 34142 Declare the syntax for the parallel product.
class pprod(𝑅, 𝑆)
 
Syntaxcsset 34143 Declare the subset relationship class.
class SSet
 
Syntaxctrans 34144 Declare the transitive set class.
class Trans
 
Syntaxcbigcup 34145 Declare the set union relationship.
class Bigcup
 
Syntaxcfix 34146 Declare the syntax for the fixpoints of a class.
class Fix 𝐴
 
Syntaxclimits 34147 Declare the class of limit ordinals.
class Limits
 
Syntaxcfuns 34148 Declare the syntax for the class of all function.
class Funs
 
Syntaxcsingle 34149 Declare the syntax for the singleton function.
class Singleton
 
Syntaxcsingles 34150 Declare the syntax for the class of all singletons.
class Singletons
 
Syntaxcimage 34151 Declare the syntax for the image functor.
class Image𝐴
 
Syntaxccart 34152 Declare the syntax for the cartesian function.
class Cart
 
Syntaxcimg 34153 Declare the syntax for the image function.
class Img
 
Syntaxcdomain 34154 Declare the syntax for the domain function.
class Domain
 
Syntaxcrange 34155 Declare the syntax for the range function.
class Range
 
Syntaxcapply 34156 Declare the syntax for the application function.
class Apply
 
Syntaxccup 34157 Declare the syntax for the cup function.
class Cup
 
Syntaxccap 34158 Declare the syntax for the cap function.
class Cap
 
Syntaxcsuccf 34159 Declare the syntax for the successor function.
class Succ
 
Syntaxcfunpart 34160 Declare the syntax for the functional part functor.
class Funpart𝐹
 
Syntaxcfullfn 34161 Declare the syntax for the full function functor.
class FullFun𝐹
 
Syntaxcrestrict 34162 Declare the syntax for the restriction function.
class Restrict
 
Syntaxcub 34163 Declare the syntax for the upper bound relationship functor.
class UB𝑅
 
Syntaxclb 34164 Declare the syntax for the lower bound relationship functor.
class LB𝑅
 
Definitiondf-txp 34165 Define the tail cross of two classes. Membership in this class is defined by txpss3v 34189 and brtxp 34191. (Contributed by Scott Fenton, 31-Mar-2012.)
(𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
 
Definitiondf-pprod 34166 Define the parallel product of two classes. Membership in this class is defined by pprodss4v 34195 and brpprod 34196. (Contributed by Scott Fenton, 11-Apr-2014.)
pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
 
Definitiondf-sset 34167 Define the subset class. For the value, see brsset 34200. (Contributed by Scott Fenton, 31-Mar-2012.)
SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
 
Definitiondf-trans 34168 Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.)
Trans = (V ∖ ran (( E ∘ E ) ∖ E ))
 
Definitiondf-bigcup 34169 Define the Bigcup function, which, per fvbigcup 34213, carries a set to its union. (Contributed by Scott Fenton, 11-Apr-2012.)
Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
 
Definitiondf-fix 34170 Define the class of all fixpoints of a relationship. (Contributed by Scott Fenton, 11-Apr-2012.)
Fix 𝐴 = dom (𝐴 ∩ I )
 
Definitiondf-limits 34171 Define the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
 
Definitiondf-funs 34172 Define the class of all functions. See elfuns 34226 for membership. (Contributed by Scott Fenton, 18-Feb-2013.)
Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )))
 
Definitiondf-singleton 34173 Define the singleton function. See brsingle 34228 for its value. (Contributed by Scott Fenton, 4-Apr-2014.)
Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
 
Definitiondf-singles 34174 Define the class of all singletons. See elsingles 34229 for membership. (Contributed by Scott Fenton, 19-Feb-2013.)
Singletons = ran Singleton
 
Definitiondf-image 34175 Define the image functor. This function takes a set 𝐴 to a function 𝑥 ↦ (𝐴𝑥), providing that the latter exists. See imageval 34241 for the derivation. (Contributed by Scott Fenton, 27-Mar-2014.)
Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
 
Definitiondf-cart 34176 Define the cartesian product function. See brcart 34243 for its value. (Contributed by Scott Fenton, 11-Apr-2014.)
Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V)))
 
Definitiondf-img 34177 Define the image function. See brimg 34248 for its value. (Contributed by Scott Fenton, 12-Apr-2014.)
Img = (Image((2nd ∘ 1st ) ↾ (1st ↾ (V × V))) ∘ Cart)
 
Definitiondf-domain 34178 Define the domain function. See brdomain 34244 for its value. (Contributed by Scott Fenton, 11-Apr-2014.)
Domain = Image(1st ↾ (V × V))
 
Definitiondf-range 34179 Define the range function. See brrange 34245 for its value. (Contributed by Scott Fenton, 11-Apr-2014.)
Range = Image(2nd ↾ (V × V))
 
Definitiondf-cup 34180 Define the little cup function. See brcup 34250 for its value. (Contributed by Scott Fenton, 14-Apr-2014.)
Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
 
Definitiondf-cap 34181 Define the little cap function. See brcap 34251 for its value. (Contributed by Scott Fenton, 17-Apr-2014.)
Cap = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∩ (2nd ∘ E )) ⊗ V)))
 
Definitiondf-restrict 34182 Define the restriction function. See brrestrict 34260 for its value. (Contributed by Scott Fenton, 17-Apr-2014.)
Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))
 
Definitiondf-succf 34183 Define the successor function. See brsuccf 34252 for its value. (Contributed by Scott Fenton, 14-Apr-2014.)
Succ = (Cup ∘ ( I ⊗ Singleton))
 
Definitiondf-apply 34184 Define the application function. See brapply 34249 for its value. (Contributed by Scott Fenton, 12-Apr-2014.)
Apply = (( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
 
Definitiondf-funpart 34185 Define the functional part of a class 𝐹. This is the maximal part of 𝐹 that is a function. See funpartfun 34254 and funpartfv 34256 for the meaning of this statement. (Contributed by Scott Fenton, 16-Apr-2014.)
Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
 
Definitiondf-fullfun 34186 Define the full function over 𝐹. This is a function with domain V that always agrees with 𝐹 for its value. (Contributed by Scott Fenton, 17-Apr-2014.)
FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
 
Definitiondf-ub 34187 Define the upper bound relationship functor. See brub 34265 for value. (Contributed by Scott Fenton, 3-May-2018.)
UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))
 
Definitiondf-lb 34188 Define the lower bound relationship functor. See brlb 34266 for value. (Contributed by Scott Fenton, 3-May-2018.)
LB𝑅 = UB𝑅
 
Theoremtxpss3v 34189 A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.)
(𝐴𝐵) ⊆ (V × (V × V))
 
Theoremtxprel 34190 A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Rel (𝐴𝐵)
 
Theorembrtxp 34191 Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 34189, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
𝑋 ∈ V    &   𝑌 ∈ V    &   𝑍 ∈ V       (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
 
Theorembrtxp2 34192* The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.)
𝐴 ∈ V       (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
 
Theoremdfpprod2 34193 Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.)
pprod(𝐴, 𝐵) = (((1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V)))))
 
Theorempprodcnveq 34194 A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.)
pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
 
Theorempprodss4v 34195 The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))
 
Theorembrpprod 34196 Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 34195, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
𝑋 ∈ V    &   𝑌 ∈ V    &   𝑍 ∈ V    &   𝑊 ∈ V       (⟨𝑋, 𝑌⟩pprod(𝐴, 𝐵)⟨𝑍, 𝑊⟩ ↔ (𝑋𝐴𝑍𝑌𝐵𝑊))
 
Theorembrpprod3a 34197* Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
𝑋 ∈ V    &   𝑌 ∈ V    &   𝑍 ∈ V       (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
 
Theorembrpprod3b 34198* Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
𝑋 ∈ V    &   𝑌 ∈ V    &   𝑍 ∈ V       (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
 
Theoremrelsset 34199 The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Rel SSet
 
Theorembrsset 34200 For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
𝐵 ∈ V       (𝐴 SSet 𝐵𝐴𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >