Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemd Structured version   Visualization version   GIF version

Theorem hgt750lemd 34625
Description: An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
hgt750lemc.n (𝜑𝑁 ∈ ℕ)
hgt750lemd.0 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
hgt750lemd (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
Distinct variable groups:   𝑖,𝑁   𝜑,𝑖

Proof of Theorem hgt750lemd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
2 diffi 9242 . . . . 5 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ ℙ) ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → ((1...𝑁) ∖ ℙ) ∈ Fin)
4 vmaf 27180 . . . . . 6 Λ:ℕ⟶ℝ
54a1i 11 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → Λ:ℕ⟶ℝ)
6 fz1ssnn 13615 . . . . . . . 8 (1...𝑁) ⊆ ℕ
76a1i 11 . . . . . . 7 (𝜑 → (1...𝑁) ⊆ ℕ)
87ssdifssd 4170 . . . . . 6 (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ ℕ)
98sselda 4008 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → 𝑖 ∈ ℕ)
105, 9ffvelcdmd 7119 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → (Λ‘𝑖) ∈ ℝ)
113, 10fsumrecl 15782 . . 3 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈ ℝ)
12 2rp 13062 . . . . 5 2 ∈ ℝ+
1312a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ+)
1413relogcld 26683 . . 3 (𝜑 → (log‘2) ∈ ℝ)
15 1nn0 12569 . . . . . 6 1 ∈ ℕ0
16 4re 12377 . . . . . . . 8 4 ∈ ℝ
17 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
18 6re 12383 . . . . . . . . . . . 12 6 ∈ ℝ
1918, 17pm3.2i 470 . . . . . . . . . . 11 (6 ∈ ℝ ∧ 2 ∈ ℝ)
20 dp2cl 32844 . . . . . . . . . . 11 ((6 ∈ ℝ ∧ 2 ∈ ℝ) → 62 ∈ ℝ)
2119, 20ax-mp 5 . . . . . . . . . 10 62 ∈ ℝ
2217, 21pm3.2i 470 . . . . . . . . 9 (2 ∈ ℝ ∧ 62 ∈ ℝ)
23 dp2cl 32844 . . . . . . . . 9 ((2 ∈ ℝ ∧ 62 ∈ ℝ) → 262 ∈ ℝ)
2422, 23ax-mp 5 . . . . . . . 8 262 ∈ ℝ
2516, 24pm3.2i 470 . . . . . . 7 (4 ∈ ℝ ∧ 262 ∈ ℝ)
26 dp2cl 32844 . . . . . . 7 ((4 ∈ ℝ ∧ 262 ∈ ℝ) → 4262 ∈ ℝ)
2725, 26ax-mp 5 . . . . . 6 4262 ∈ ℝ
28 dpcl 32855 . . . . . 6 ((1 ∈ ℕ04262 ∈ ℝ) → (1.4262) ∈ ℝ)
2915, 27, 28mp2an 691 . . . . 5 (1.4262) ∈ ℝ
3029a1i 11 . . . 4 (𝜑 → (1.4262) ∈ ℝ)
31 hgt750lemc.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
3231nnred 12308 . . . . 5 (𝜑𝑁 ∈ ℝ)
3331nnrpd 13097 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
3433rpge0d 13103 . . . . 5 (𝜑 → 0 ≤ 𝑁)
3532, 34resqrtcld 15466 . . . 4 (𝜑 → (√‘𝑁) ∈ ℝ)
3630, 35remulcld 11320 . . 3 (𝜑 → ((1.4262) · (√‘𝑁)) ∈ ℝ)
37 0nn0 12568 . . . . . 6 0 ∈ ℕ0
38 0re 11292 . . . . . . . 8 0 ∈ ℝ
39 1re 11290 . . . . . . . . . . . 12 1 ∈ ℝ
4038, 39pm3.2i 470 . . . . . . . . . . 11 (0 ∈ ℝ ∧ 1 ∈ ℝ)
41 dp2cl 32844 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → 01 ∈ ℝ)
4240, 41ax-mp 5 . . . . . . . . . 10 01 ∈ ℝ
4338, 42pm3.2i 470 . . . . . . . . 9 (0 ∈ ℝ ∧ 01 ∈ ℝ)
44 dp2cl 32844 . . . . . . . . 9 ((0 ∈ ℝ ∧ 01 ∈ ℝ) → 001 ∈ ℝ)
4543, 44ax-mp 5 . . . . . . . 8 001 ∈ ℝ
4638, 45pm3.2i 470 . . . . . . 7 (0 ∈ ℝ ∧ 001 ∈ ℝ)
47 dp2cl 32844 . . . . . . 7 ((0 ∈ ℝ ∧ 001 ∈ ℝ) → 0001 ∈ ℝ)
4846, 47ax-mp 5 . . . . . 6 0001 ∈ ℝ
49 dpcl 32855 . . . . . 6 ((0 ∈ ℕ00001 ∈ ℝ) → (0.0001) ∈ ℝ)
5037, 48, 49mp2an 691 . . . . 5 (0.0001) ∈ ℝ
5150a1i 11 . . . 4 (𝜑 → (0.0001) ∈ ℝ)
5251, 35remulcld 11320 . . 3 (𝜑 → ((0.0001) · (√‘𝑁)) ∈ ℝ)
5331nnzd 12666 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
54 chpvalz 34605 . . . . . . 7 (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖))
5553, 54syl 17 . . . . . 6 (𝜑 → (ψ‘𝑁) = Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖))
56 chtvalz 34606 . . . . . . . 8 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖))
5753, 56syl 17 . . . . . . 7 (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖))
58 inss2 4259 . . . . . . . . . . 11 ((1...𝑁) ∩ ℙ) ⊆ ℙ
5958a1i 11 . . . . . . . . . 10 (𝜑 → ((1...𝑁) ∩ ℙ) ⊆ ℙ)
6059sselda 4008 . . . . . . . . 9 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℙ)
61 vmaprm 27178 . . . . . . . . 9 (𝑖 ∈ ℙ → (Λ‘𝑖) = (log‘𝑖))
6260, 61syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → (Λ‘𝑖) = (log‘𝑖))
6362sumeq2dv 15750 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖))
6457, 63eqtr4d 2783 . . . . . 6 (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖))
6555, 64oveq12d 7466 . . . . 5 (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) = (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)))
66 infi 9330 . . . . . . . 8 ((1...𝑁) ∈ Fin → ((1...𝑁) ∩ ℙ) ∈ Fin)
671, 66syl 17 . . . . . . 7 (𝜑 → ((1...𝑁) ∩ ℙ) ∈ Fin)
684a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → Λ:ℕ⟶ℝ)
69 inss1 4258 . . . . . . . . . . . 12 ((1...𝑁) ∩ ℙ) ⊆ (1...𝑁)
7069, 6sstri 4018 . . . . . . . . . . 11 ((1...𝑁) ∩ ℙ) ⊆ ℕ
7170a1i 11 . . . . . . . . . 10 (𝜑 → ((1...𝑁) ∩ ℙ) ⊆ ℕ)
7271sselda 4008 . . . . . . . . 9 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℕ)
7368, 72ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → (Λ‘𝑖) ∈ ℝ)
7473recnd 11318 . . . . . . 7 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → (Λ‘𝑖) ∈ ℂ)
7567, 74fsumcl 15781 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) ∈ ℂ)
7610recnd 11318 . . . . . . 7 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → (Λ‘𝑖) ∈ ℂ)
773, 76fsumcl 15781 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈ ℂ)
78 inindif 32546 . . . . . . . 8 (((1...𝑁) ∩ ℙ) ∩ ((1...𝑁) ∖ ℙ)) = ∅
7978a1i 11 . . . . . . 7 (𝜑 → (((1...𝑁) ∩ ℙ) ∩ ((1...𝑁) ∖ ℙ)) = ∅)
80 inundif 4502 . . . . . . . . 9 (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖ ℙ)) = (1...𝑁)
8180eqcomi 2749 . . . . . . . 8 (1...𝑁) = (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖ ℙ))
8281a1i 11 . . . . . . 7 (𝜑 → (1...𝑁) = (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖ ℙ)))
834a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁)) → Λ:ℕ⟶ℝ)
847sselda 4008 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℕ)
8583, 84ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℝ)
8685recnd 11318 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℂ)
8779, 82, 1, 86fsumsplit 15789 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) = (Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) + Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖)))
8875, 77, 87mvrladdd 11703 . . . . 5 (𝜑 → (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)) = Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖))
8965, 88eqtr2d 2781 . . . 4 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) = ((ψ‘𝑁) − (θ‘𝑁)))
90 fveq2 6920 . . . . . . 7 (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁))
91 fveq2 6920 . . . . . . 7 (𝑥 = 𝑁 → (θ‘𝑥) = (θ‘𝑁))
9290, 91oveq12d 7466 . . . . . 6 (𝑥 = 𝑁 → ((ψ‘𝑥) − (θ‘𝑥)) = ((ψ‘𝑁) − (θ‘𝑁)))
93 fveq2 6920 . . . . . . 7 (𝑥 = 𝑁 → (√‘𝑥) = (√‘𝑁))
9493oveq2d 7464 . . . . . 6 (𝑥 = 𝑁 → ((1.4262) · (√‘𝑥)) = ((1.4262) · (√‘𝑁)))
9592, 94breq12d 5179 . . . . 5 (𝑥 = 𝑁 → (((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥)) ↔ ((ψ‘𝑁) − (θ‘𝑁)) < ((1.4262) · (√‘𝑁))))
96 ax-ros336 34623 . . . . . 6 𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥))
9796a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥)))
9895, 97, 33rspcdva 3636 . . . 4 (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) < ((1.4262) · (√‘𝑁)))
9989, 98eqbrtrd 5188 . . 3 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) < ((1.4262) · (√‘𝑁)))
10039a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ)
101 log2le1 27011 . . . . 5 (log‘2) < 1
102101a1i 11 . . . 4 (𝜑 → (log‘2) < 1)
103 10nn0 12776 . . . . . . . . 9 10 ∈ ℕ0
104 7nn0 12575 . . . . . . . . 9 7 ∈ ℕ0
105103, 104nn0expcli 14139 . . . . . . . 8 (10↑7) ∈ ℕ0
106105nn0rei 12564 . . . . . . 7 (10↑7) ∈ ℝ
107106a1i 11 . . . . . 6 (𝜑 → (10↑7) ∈ ℝ)
10851, 107remulcld 11320 . . . . 5 (𝜑 → ((0.0001) · (10↑7)) ∈ ℝ)
109103nn0rei 12564 . . . . . . . . . . 11 10 ∈ ℝ
110 0z 12650 . . . . . . . . . . 11 0 ∈ ℤ
111 3z 12676 . . . . . . . . . . 11 3 ∈ ℤ
112109, 110, 1113pm3.2i 1339 . . . . . . . . . 10 (10 ∈ ℝ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ)
113 1lt10 12897 . . . . . . . . . . 11 1 < 10
114 3pos 12398 . . . . . . . . . . 11 0 < 3
115113, 114pm3.2i 470 . . . . . . . . . 10 (1 < 10 ∧ 0 < 3)
116 ltexp2a 14216 . . . . . . . . . 10 (((10 ∈ ℝ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 10 ∧ 0 < 3)) → (10↑0) < (10↑3))
117112, 115, 116mp2an 691 . . . . . . . . 9 (10↑0) < (10↑3)
118103numexp0 17123 . . . . . . . . . 10 (10↑0) = 1
119118eqcomi 2749 . . . . . . . . 9 1 = (10↑0)
120109recni 11304 . . . . . . . . . . 11 10 ∈ ℂ
121 10pos 12775 . . . . . . . . . . . 12 0 < 10
12238, 121gtneii 11402 . . . . . . . . . . 11 10 ≠ 0
123 4z 12677 . . . . . . . . . . 11 4 ∈ ℤ
124 expm1 14163 . . . . . . . . . . 11 ((10 ∈ ℂ ∧ 10 ≠ 0 ∧ 4 ∈ ℤ) → (10↑(4 − 1)) = ((10↑4) / 10))
125120, 122, 123, 124mp3an 1461 . . . . . . . . . 10 (10↑(4 − 1)) = ((10↑4) / 10)
126 4m1e3 12422 . . . . . . . . . . 11 (4 − 1) = 3
127126oveq2i 7459 . . . . . . . . . 10 (10↑(4 − 1)) = (10↑3)
128 4nn0 12572 . . . . . . . . . . . . 13 4 ∈ ℕ0
129103, 128nn0expcli 14139 . . . . . . . . . . . 12 (10↑4) ∈ ℕ0
130129nn0cni 12565 . . . . . . . . . . 11 (10↑4) ∈ ℂ
131 divrec2 11966 . . . . . . . . . . 11 (((10↑4) ∈ ℂ ∧ 10 ∈ ℂ ∧ 10 ≠ 0) → ((10↑4) / 10) = ((1 / 10) · (10↑4)))
132130, 120, 122, 131mp3an 1461 . . . . . . . . . 10 ((10↑4) / 10) = ((1 / 10) · (10↑4))
133125, 127, 1323eqtr3ri 2777 . . . . . . . . 9 ((1 / 10) · (10↑4)) = (10↑3)
134117, 119, 1333brtr4i 5196 . . . . . . . 8 1 < ((1 / 10) · (10↑4))
135 1rp 13061 . . . . . . . . . 10 1 ∈ ℝ+
136135dp0h 32866 . . . . . . . . 9 (0.1) = (1 / 10)
137136oveq1i 7458 . . . . . . . 8 ((0.1) · (10↑4)) = ((1 / 10) · (10↑4))
138134, 137breqtrri 5193 . . . . . . 7 1 < ((0.1) · (10↑4))
139138a1i 11 . . . . . 6 (𝜑 → 1 < ((0.1) · (10↑4)))
140 4p1e5 12439 . . . . . . . 8 (4 + 1) = 5
141 5nn0 12573 . . . . . . . . 9 5 ∈ ℕ0
142141nn0zi 12668 . . . . . . . 8 5 ∈ ℤ
14337, 135, 140, 123, 142dpexpp1 32872 . . . . . . 7 ((0.1) · (10↑4)) = ((0.01) · (10↑5))
14437, 135rpdp2cl 32846 . . . . . . . 8 01 ∈ ℝ+
145 5p1e6 12440 . . . . . . . 8 (5 + 1) = 6
146 6nn0 12574 . . . . . . . . 9 6 ∈ ℕ0
147146nn0zi 12668 . . . . . . . 8 6 ∈ ℤ
14837, 144, 145, 142, 147dpexpp1 32872 . . . . . . 7 ((0.01) · (10↑5)) = ((0.001) · (10↑6))
14937, 144rpdp2cl 32846 . . . . . . . 8 001 ∈ ℝ+
150 6p1e7 12441 . . . . . . . 8 (6 + 1) = 7
151104nn0zi 12668 . . . . . . . 8 7 ∈ ℤ
15237, 149, 150, 147, 151dpexpp1 32872 . . . . . . 7 ((0.001) · (10↑6)) = ((0.0001) · (10↑7))
153143, 148, 1523eqtrri 2773 . . . . . 6 ((0.0001) · (10↑7)) = ((0.1) · (10↑4))
154139, 153breqtrrdi 5208 . . . . 5 (𝜑 → 1 < ((0.0001) · (10↑7)))
15537, 149rpdp2cl 32846 . . . . . . . 8 0001 ∈ ℝ+
15637, 155rpdpcl 32867 . . . . . . 7 (0.0001) ∈ ℝ+
157156a1i 11 . . . . . 6 (𝜑 → (0.0001) ∈ ℝ+)
158 2nn0 12570 . . . . . . . . . . . 12 2 ∈ ℕ0
159158, 104deccl 12773 . . . . . . . . . . 11 27 ∈ ℕ0
160103, 159nn0expcli 14139 . . . . . . . . . 10 (10↑27) ∈ ℕ0
161160nn0rei 12564 . . . . . . . . 9 (10↑27) ∈ ℝ
162161a1i 11 . . . . . . . 8 (𝜑 → (10↑27) ∈ ℝ)
163160nn0ge0i 12580 . . . . . . . . 9 0 ≤ (10↑27)
164163a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ (10↑27))
165162, 164resqrtcld 15466 . . . . . . 7 (𝜑 → (√‘(10↑27)) ∈ ℝ)
166 expmul 14158 . . . . . . . . . . . . 13 ((10 ∈ ℂ ∧ 7 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (10↑(7 · 2)) = ((10↑7)↑2))
167120, 104, 158, 166mp3an 1461 . . . . . . . . . . . 12 (10↑(7 · 2)) = ((10↑7)↑2)
168 7t2e14 12867 . . . . . . . . . . . . 13 (7 · 2) = 14
169168oveq2i 7459 . . . . . . . . . . . 12 (10↑(7 · 2)) = (10↑14)
170167, 169eqtr3i 2770 . . . . . . . . . . 11 ((10↑7)↑2) = (10↑14)
171170fveq2i 6923 . . . . . . . . . 10 (√‘((10↑7)↑2)) = (√‘(10↑14))
172 expgt0 14146 . . . . . . . . . . . . 13 ((10 ∈ ℝ ∧ 7 ∈ ℤ ∧ 0 < 10) → 0 < (10↑7))
173109, 151, 121, 172mp3an 1461 . . . . . . . . . . . 12 0 < (10↑7)
17438, 106, 173ltleii 11413 . . . . . . . . . . 11 0 ≤ (10↑7)
175 sqrtsq 15318 . . . . . . . . . . 11 (((10↑7) ∈ ℝ ∧ 0 ≤ (10↑7)) → (√‘((10↑7)↑2)) = (10↑7))
176106, 174, 175mp2an 691 . . . . . . . . . 10 (√‘((10↑7)↑2)) = (10↑7)
177171, 176eqtr3i 2770 . . . . . . . . 9 (√‘(10↑14)) = (10↑7)
17815, 128deccl 12773 . . . . . . . . . . . . 13 14 ∈ ℕ0
179178nn0zi 12668 . . . . . . . . . . . 12 14 ∈ ℤ
180159nn0zi 12668 . . . . . . . . . . . 12 27 ∈ ℤ
181109, 179, 1803pm3.2i 1339 . . . . . . . . . . 11 (10 ∈ ℝ ∧ 14 ∈ ℤ ∧ 27 ∈ ℤ)
182 4lt10 12894 . . . . . . . . . . . . 13 4 < 10
183 1lt2 12464 . . . . . . . . . . . . 13 1 < 2
18415, 158, 128, 104, 182, 183decltc 12787 . . . . . . . . . . . 12 14 < 27
185113, 184pm3.2i 470 . . . . . . . . . . 11 (1 < 10 ∧ 14 < 27)
186 ltexp2a 14216 . . . . . . . . . . 11 (((10 ∈ ℝ ∧ 14 ∈ ℤ ∧ 27 ∈ ℤ) ∧ (1 < 10 ∧ 14 < 27)) → (10↑14) < (10↑27))
187181, 185, 186mp2an 691 . . . . . . . . . 10 (10↑14) < (10↑27)
188103, 178nn0expcli 14139 . . . . . . . . . . . . 13 (10↑14) ∈ ℕ0
189188nn0rei 12564 . . . . . . . . . . . 12 (10↑14) ∈ ℝ
190 expgt0 14146 . . . . . . . . . . . . . 14 ((10 ∈ ℝ ∧ 14 ∈ ℤ ∧ 0 < 10) → 0 < (10↑14))
191109, 179, 121, 190mp3an 1461 . . . . . . . . . . . . 13 0 < (10↑14)
19238, 189, 191ltleii 11413 . . . . . . . . . . . 12 0 ≤ (10↑14)
193189, 192pm3.2i 470 . . . . . . . . . . 11 ((10↑14) ∈ ℝ ∧ 0 ≤ (10↑14))
194161, 163pm3.2i 470 . . . . . . . . . . 11 ((10↑27) ∈ ℝ ∧ 0 ≤ (10↑27))
195 sqrtlt 15310 . . . . . . . . . . 11 ((((10↑14) ∈ ℝ ∧ 0 ≤ (10↑14)) ∧ ((10↑27) ∈ ℝ ∧ 0 ≤ (10↑27))) → ((10↑14) < (10↑27) ↔ (√‘(10↑14)) < (√‘(10↑27))))
196193, 194, 195mp2an 691 . . . . . . . . . 10 ((10↑14) < (10↑27) ↔ (√‘(10↑14)) < (√‘(10↑27)))
197187, 196mpbi 230 . . . . . . . . 9 (√‘(10↑14)) < (√‘(10↑27))
198177, 197eqbrtrri 5189 . . . . . . . 8 (10↑7) < (√‘(10↑27))
199198a1i 11 . . . . . . 7 (𝜑 → (10↑7) < (√‘(10↑27)))
200 hgt750lemd.0 . . . . . . . 8 (𝜑 → (10↑27) ≤ 𝑁)
201162, 164, 32, 34sqrtled 15475 . . . . . . . 8 (𝜑 → ((10↑27) ≤ 𝑁 ↔ (√‘(10↑27)) ≤ (√‘𝑁)))
202200, 201mpbid 232 . . . . . . 7 (𝜑 → (√‘(10↑27)) ≤ (√‘𝑁))
203107, 165, 35, 199, 202ltletrd 11450 . . . . . 6 (𝜑 → (10↑7) < (√‘𝑁))
204107, 35, 157, 203ltmul2dd 13155 . . . . 5 (𝜑 → ((0.0001) · (10↑7)) < ((0.0001) · (√‘𝑁)))
205100, 108, 52, 154, 204lttrd 11451 . . . 4 (𝜑 → 1 < ((0.0001) · (√‘𝑁)))
20614, 100, 52, 102, 205lttrd 11451 . . 3 (𝜑 → (log‘2) < ((0.0001) · (√‘𝑁)))
20711, 14, 36, 52, 99, 206lt2addd 11913 . 2 (𝜑 → (Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) + (log‘2)) < (((1.4262) · (√‘𝑁)) + ((0.0001) · (√‘𝑁))))
208 nfv 1913 . . 3 𝑖𝜑
209 nfcv 2908 . . 3 𝑖(log‘2)
210 2prm 16739 . . . 4 2 ∈ ℙ
211210a1i 11 . . 3 (𝜑 → 2 ∈ ℙ)
212 elndif 4156 . . . 4 (2 ∈ ℙ → ¬ 2 ∈ ((1...𝑁) ∖ ℙ))
213211, 212syl 17 . . 3 (𝜑 → ¬ 2 ∈ ((1...𝑁) ∖ ℙ))
214 fveq2 6920 . . . 4 (𝑖 = 2 → (Λ‘𝑖) = (Λ‘2))
215 vmaprm 27178 . . . . 5 (2 ∈ ℙ → (Λ‘2) = (log‘2))
216210, 215ax-mp 5 . . . 4 (Λ‘2) = (log‘2)
217214, 216eqtrdi 2796 . . 3 (𝑖 = 2 → (Λ‘𝑖) = (log‘2))
218 2cnd 12371 . . . 4 (𝜑 → 2 ∈ ℂ)
219 2ne0 12397 . . . . 5 2 ≠ 0
220219a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
221218, 220logcld 26630 . . 3 (𝜑 → (log‘2) ∈ ℂ)
222208, 209, 3, 211, 213, 76, 217, 221fsumsplitsn 15792 . 2 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) = (Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) + (log‘2)))
223146, 12rpdp2cl 32846 . . . . . 6 62 ∈ ℝ+
224158, 223rpdp2cl 32846 . . . . 5 262 ∈ ℝ+
225 3rp 13063 . . . . . . 7 3 ∈ ℝ+
226146, 225rpdp2cl 32846 . . . . . 6 63 ∈ ℝ+
227158, 226rpdp2cl 32846 . . . . 5 263 ∈ ℝ+
228 1p0e1 12417 . . . . 5 (1 + 0) = 1
229 4cn 12378 . . . . . . 7 4 ∈ ℂ
230229addridi 11477 . . . . . 6 (4 + 0) = 4
231 2cn 12368 . . . . . . . 8 2 ∈ ℂ
232231addridi 11477 . . . . . . 7 (2 + 0) = 2
233 3nn0 12571 . . . . . . . 8 3 ∈ ℕ0
234 eqid 2740 . . . . . . . . 9 62 = 62
235 eqid 2740 . . . . . . . . 9 01 = 01
236 6cn 12384 . . . . . . . . . 10 6 ∈ ℂ
237236addridi 11477 . . . . . . . . 9 (6 + 0) = 6
238 2p1e3 12435 . . . . . . . . 9 (2 + 1) = 3
239146, 158, 37, 15, 234, 235, 237, 238decadd 12812 . . . . . . . 8 (62 + 01) = 63
240146, 158, 37, 15, 146, 233, 239dpadd 32875 . . . . . . 7 ((6.2) + (0.1)) = (6.3)
241146, 12, 37, 135, 146, 225, 158, 37, 232, 240dpadd2 32874 . . . . . 6 ((2.62) + (0.01)) = (2.63)
242158, 223, 37, 144, 158, 226, 128, 37, 230, 241dpadd2 32874 . . . . 5 ((4.262) + (0.001)) = (4.263)
243128, 224, 37, 149, 128, 227, 15, 37, 228, 242dpadd2 32874 . . . 4 ((1.4262) + (0.0001)) = (1.4263)
244243oveq1i 7458 . . 3 (((1.4262) + (0.0001)) · (√‘𝑁)) = ((1.4263) · (√‘𝑁))
24530recnd 11318 . . . 4 (𝜑 → (1.4262) ∈ ℂ)
24651recnd 11318 . . . 4 (𝜑 → (0.0001) ∈ ℂ)
24735recnd 11318 . . . 4 (𝜑 → (√‘𝑁) ∈ ℂ)
248245, 246, 247adddird 11315 . . 3 (𝜑 → (((1.4262) + (0.0001)) · (√‘𝑁)) = (((1.4262) · (√‘𝑁)) + ((0.0001) · (√‘𝑁))))
249244, 248eqtr3id 2794 . 2 (𝜑 → ((1.4263) · (√‘𝑁)) = (((1.4262) · (√‘𝑁)) + ((0.0001) · (√‘𝑁))))
250207, 222, 2493brtr4d 5198 1 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  5c5 12351  6c6 12352  7c7 12353  0cn0 12553  cz 12639  cdc 12758  +crp 13057  ...cfz 13567  cexp 14112  csqrt 15282  Σcsu 15734  cprime 16718  logclog 26614  θccht 27152  Λcvma 27153  ψcchp 27154  cdp2 32835  .cdp 32852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-ros336 34623
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-atan 26928  df-cht 27158  df-vma 27159  df-chp 27160  df-dp2 32836  df-dp 32853
This theorem is referenced by:  hgt750leme  34635
  Copyright terms: Public domain W3C validator