Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemd Structured version   Visualization version   GIF version

Theorem hgt750lemd 32528
Description: An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
hgt750lemc.n (𝜑𝑁 ∈ ℕ)
hgt750lemd.0 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
hgt750lemd (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
Distinct variable groups:   𝑖,𝑁   𝜑,𝑖

Proof of Theorem hgt750lemd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13621 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
2 diffi 8979 . . . . 5 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ ℙ) ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → ((1...𝑁) ∖ ℙ) ∈ Fin)
4 vmaf 26173 . . . . . 6 Λ:ℕ⟶ℝ
54a1i 11 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → Λ:ℕ⟶ℝ)
6 fz1ssnn 13216 . . . . . . . 8 (1...𝑁) ⊆ ℕ
76a1i 11 . . . . . . 7 (𝜑 → (1...𝑁) ⊆ ℕ)
87ssdifssd 4073 . . . . . 6 (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ ℕ)
98sselda 3917 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → 𝑖 ∈ ℕ)
105, 9ffvelrnd 6944 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → (Λ‘𝑖) ∈ ℝ)
113, 10fsumrecl 15374 . . 3 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈ ℝ)
12 2rp 12664 . . . . 5 2 ∈ ℝ+
1312a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ+)
1413relogcld 25683 . . 3 (𝜑 → (log‘2) ∈ ℝ)
15 1nn0 12179 . . . . . 6 1 ∈ ℕ0
16 4re 11987 . . . . . . . 8 4 ∈ ℝ
17 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
18 6re 11993 . . . . . . . . . . . 12 6 ∈ ℝ
1918, 17pm3.2i 470 . . . . . . . . . . 11 (6 ∈ ℝ ∧ 2 ∈ ℝ)
20 dp2cl 31056 . . . . . . . . . . 11 ((6 ∈ ℝ ∧ 2 ∈ ℝ) → 62 ∈ ℝ)
2119, 20ax-mp 5 . . . . . . . . . 10 62 ∈ ℝ
2217, 21pm3.2i 470 . . . . . . . . 9 (2 ∈ ℝ ∧ 62 ∈ ℝ)
23 dp2cl 31056 . . . . . . . . 9 ((2 ∈ ℝ ∧ 62 ∈ ℝ) → 262 ∈ ℝ)
2422, 23ax-mp 5 . . . . . . . 8 262 ∈ ℝ
2516, 24pm3.2i 470 . . . . . . 7 (4 ∈ ℝ ∧ 262 ∈ ℝ)
26 dp2cl 31056 . . . . . . 7 ((4 ∈ ℝ ∧ 262 ∈ ℝ) → 4262 ∈ ℝ)
2725, 26ax-mp 5 . . . . . 6 4262 ∈ ℝ
28 dpcl 31067 . . . . . 6 ((1 ∈ ℕ04262 ∈ ℝ) → (1.4262) ∈ ℝ)
2915, 27, 28mp2an 688 . . . . 5 (1.4262) ∈ ℝ
3029a1i 11 . . . 4 (𝜑 → (1.4262) ∈ ℝ)
31 hgt750lemc.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
3231nnred 11918 . . . . 5 (𝜑𝑁 ∈ ℝ)
3331nnrpd 12699 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
3433rpge0d 12705 . . . . 5 (𝜑 → 0 ≤ 𝑁)
3532, 34resqrtcld 15057 . . . 4 (𝜑 → (√‘𝑁) ∈ ℝ)
3630, 35remulcld 10936 . . 3 (𝜑 → ((1.4262) · (√‘𝑁)) ∈ ℝ)
37 0nn0 12178 . . . . . 6 0 ∈ ℕ0
38 0re 10908 . . . . . . . 8 0 ∈ ℝ
39 1re 10906 . . . . . . . . . . . 12 1 ∈ ℝ
4038, 39pm3.2i 470 . . . . . . . . . . 11 (0 ∈ ℝ ∧ 1 ∈ ℝ)
41 dp2cl 31056 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → 01 ∈ ℝ)
4240, 41ax-mp 5 . . . . . . . . . 10 01 ∈ ℝ
4338, 42pm3.2i 470 . . . . . . . . 9 (0 ∈ ℝ ∧ 01 ∈ ℝ)
44 dp2cl 31056 . . . . . . . . 9 ((0 ∈ ℝ ∧ 01 ∈ ℝ) → 001 ∈ ℝ)
4543, 44ax-mp 5 . . . . . . . 8 001 ∈ ℝ
4638, 45pm3.2i 470 . . . . . . 7 (0 ∈ ℝ ∧ 001 ∈ ℝ)
47 dp2cl 31056 . . . . . . 7 ((0 ∈ ℝ ∧ 001 ∈ ℝ) → 0001 ∈ ℝ)
4846, 47ax-mp 5 . . . . . 6 0001 ∈ ℝ
49 dpcl 31067 . . . . . 6 ((0 ∈ ℕ00001 ∈ ℝ) → (0.0001) ∈ ℝ)
5037, 48, 49mp2an 688 . . . . 5 (0.0001) ∈ ℝ
5150a1i 11 . . . 4 (𝜑 → (0.0001) ∈ ℝ)
5251, 35remulcld 10936 . . 3 (𝜑 → ((0.0001) · (√‘𝑁)) ∈ ℝ)
5331nnzd 12354 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
54 chpvalz 32508 . . . . . . 7 (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖))
5553, 54syl 17 . . . . . 6 (𝜑 → (ψ‘𝑁) = Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖))
56 chtvalz 32509 . . . . . . . 8 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖))
5753, 56syl 17 . . . . . . 7 (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖))
58 inss2 4160 . . . . . . . . . . 11 ((1...𝑁) ∩ ℙ) ⊆ ℙ
5958a1i 11 . . . . . . . . . 10 (𝜑 → ((1...𝑁) ∩ ℙ) ⊆ ℙ)
6059sselda 3917 . . . . . . . . 9 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℙ)
61 vmaprm 26171 . . . . . . . . 9 (𝑖 ∈ ℙ → (Λ‘𝑖) = (log‘𝑖))
6260, 61syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → (Λ‘𝑖) = (log‘𝑖))
6362sumeq2dv 15343 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖))
6457, 63eqtr4d 2781 . . . . . 6 (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖))
6555, 64oveq12d 7273 . . . . 5 (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) = (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)))
66 infi 8972 . . . . . . . 8 ((1...𝑁) ∈ Fin → ((1...𝑁) ∩ ℙ) ∈ Fin)
671, 66syl 17 . . . . . . 7 (𝜑 → ((1...𝑁) ∩ ℙ) ∈ Fin)
684a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → Λ:ℕ⟶ℝ)
69 inss1 4159 . . . . . . . . . . . 12 ((1...𝑁) ∩ ℙ) ⊆ (1...𝑁)
7069, 6sstri 3926 . . . . . . . . . . 11 ((1...𝑁) ∩ ℙ) ⊆ ℕ
7170a1i 11 . . . . . . . . . 10 (𝜑 → ((1...𝑁) ∩ ℙ) ⊆ ℕ)
7271sselda 3917 . . . . . . . . 9 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℕ)
7368, 72ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → (Λ‘𝑖) ∈ ℝ)
7473recnd 10934 . . . . . . 7 ((𝜑𝑖 ∈ ((1...𝑁) ∩ ℙ)) → (Λ‘𝑖) ∈ ℂ)
7567, 74fsumcl 15373 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) ∈ ℂ)
7610recnd 10934 . . . . . . 7 ((𝜑𝑖 ∈ ((1...𝑁) ∖ ℙ)) → (Λ‘𝑖) ∈ ℂ)
773, 76fsumcl 15373 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈ ℂ)
78 inindif 30764 . . . . . . . 8 (((1...𝑁) ∩ ℙ) ∩ ((1...𝑁) ∖ ℙ)) = ∅
7978a1i 11 . . . . . . 7 (𝜑 → (((1...𝑁) ∩ ℙ) ∩ ((1...𝑁) ∖ ℙ)) = ∅)
80 inundif 4409 . . . . . . . . 9 (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖ ℙ)) = (1...𝑁)
8180eqcomi 2747 . . . . . . . 8 (1...𝑁) = (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖ ℙ))
8281a1i 11 . . . . . . 7 (𝜑 → (1...𝑁) = (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖ ℙ)))
834a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁)) → Λ:ℕ⟶ℝ)
847sselda 3917 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℕ)
8583, 84ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℝ)
8685recnd 10934 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℂ)
8779, 82, 1, 86fsumsplit 15381 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) = (Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) + Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖)))
8875, 77, 87mvrladdd 11318 . . . . 5 (𝜑 → (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)) = Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖))
8965, 88eqtr2d 2779 . . . 4 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) = ((ψ‘𝑁) − (θ‘𝑁)))
90 fveq2 6756 . . . . . . 7 (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁))
91 fveq2 6756 . . . . . . 7 (𝑥 = 𝑁 → (θ‘𝑥) = (θ‘𝑁))
9290, 91oveq12d 7273 . . . . . 6 (𝑥 = 𝑁 → ((ψ‘𝑥) − (θ‘𝑥)) = ((ψ‘𝑁) − (θ‘𝑁)))
93 fveq2 6756 . . . . . . 7 (𝑥 = 𝑁 → (√‘𝑥) = (√‘𝑁))
9493oveq2d 7271 . . . . . 6 (𝑥 = 𝑁 → ((1.4262) · (√‘𝑥)) = ((1.4262) · (√‘𝑁)))
9592, 94breq12d 5083 . . . . 5 (𝑥 = 𝑁 → (((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥)) ↔ ((ψ‘𝑁) − (θ‘𝑁)) < ((1.4262) · (√‘𝑁))))
96 ax-ros336 32526 . . . . . 6 𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥))
9796a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥)))
9895, 97, 33rspcdva 3554 . . . 4 (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) < ((1.4262) · (√‘𝑁)))
9989, 98eqbrtrd 5092 . . 3 (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) < ((1.4262) · (√‘𝑁)))
10039a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ)
101 log2le1 26005 . . . . 5 (log‘2) < 1
102101a1i 11 . . . 4 (𝜑 → (log‘2) < 1)
103 10nn0 12384 . . . . . . . . 9 10 ∈ ℕ0
104 7nn0 12185 . . . . . . . . 9 7 ∈ ℕ0
105103, 104nn0expcli 13737 . . . . . . . 8 (10↑7) ∈ ℕ0
106105nn0rei 12174 . . . . . . 7 (10↑7) ∈ ℝ
107106a1i 11 . . . . . 6 (𝜑 → (10↑7) ∈ ℝ)
10851, 107remulcld 10936 . . . . 5 (𝜑 → ((0.0001) · (10↑7)) ∈ ℝ)
109103nn0rei 12174 . . . . . . . . . . 11 10 ∈ ℝ
110 0z 12260 . . . . . . . . . . 11 0 ∈ ℤ
111 3z 12283 . . . . . . . . . . 11 3 ∈ ℤ
112109, 110, 1113pm3.2i 1337 . . . . . . . . . 10 (10 ∈ ℝ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ)
113 1lt10 12505 . . . . . . . . . . 11 1 < 10
114 3pos 12008 . . . . . . . . . . 11 0 < 3
115113, 114pm3.2i 470 . . . . . . . . . 10 (1 < 10 ∧ 0 < 3)
116 ltexp2a 13812 . . . . . . . . . 10 (((10 ∈ ℝ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 10 ∧ 0 < 3)) → (10↑0) < (10↑3))
117112, 115, 116mp2an 688 . . . . . . . . 9 (10↑0) < (10↑3)
118103numexp0 16705 . . . . . . . . . 10 (10↑0) = 1
119118eqcomi 2747 . . . . . . . . 9 1 = (10↑0)
120109recni 10920 . . . . . . . . . . 11 10 ∈ ℂ
121 10pos 12383 . . . . . . . . . . . 12 0 < 10
12238, 121gtneii 11017 . . . . . . . . . . 11 10 ≠ 0
123 4z 12284 . . . . . . . . . . 11 4 ∈ ℤ
124 expm1 13761 . . . . . . . . . . 11 ((10 ∈ ℂ ∧ 10 ≠ 0 ∧ 4 ∈ ℤ) → (10↑(4 − 1)) = ((10↑4) / 10))
125120, 122, 123, 124mp3an 1459 . . . . . . . . . 10 (10↑(4 − 1)) = ((10↑4) / 10)
126 4m1e3 12032 . . . . . . . . . . 11 (4 − 1) = 3
127126oveq2i 7266 . . . . . . . . . 10 (10↑(4 − 1)) = (10↑3)
128 4nn0 12182 . . . . . . . . . . . . 13 4 ∈ ℕ0
129103, 128nn0expcli 13737 . . . . . . . . . . . 12 (10↑4) ∈ ℕ0
130129nn0cni 12175 . . . . . . . . . . 11 (10↑4) ∈ ℂ
131 divrec2 11580 . . . . . . . . . . 11 (((10↑4) ∈ ℂ ∧ 10 ∈ ℂ ∧ 10 ≠ 0) → ((10↑4) / 10) = ((1 / 10) · (10↑4)))
132130, 120, 122, 131mp3an 1459 . . . . . . . . . 10 ((10↑4) / 10) = ((1 / 10) · (10↑4))
133125, 127, 1323eqtr3ri 2775 . . . . . . . . 9 ((1 / 10) · (10↑4)) = (10↑3)
134117, 119, 1333brtr4i 5100 . . . . . . . 8 1 < ((1 / 10) · (10↑4))
135 1rp 12663 . . . . . . . . . 10 1 ∈ ℝ+
136135dp0h 31078 . . . . . . . . 9 (0.1) = (1 / 10)
137136oveq1i 7265 . . . . . . . 8 ((0.1) · (10↑4)) = ((1 / 10) · (10↑4))
138134, 137breqtrri 5097 . . . . . . 7 1 < ((0.1) · (10↑4))
139138a1i 11 . . . . . 6 (𝜑 → 1 < ((0.1) · (10↑4)))
140 4p1e5 12049 . . . . . . . 8 (4 + 1) = 5
141 5nn0 12183 . . . . . . . . 9 5 ∈ ℕ0
142141nn0zi 12275 . . . . . . . 8 5 ∈ ℤ
14337, 135, 140, 123, 142dpexpp1 31084 . . . . . . 7 ((0.1) · (10↑4)) = ((0.01) · (10↑5))
14437, 135rpdp2cl 31058 . . . . . . . 8 01 ∈ ℝ+
145 5p1e6 12050 . . . . . . . 8 (5 + 1) = 6
146 6nn0 12184 . . . . . . . . 9 6 ∈ ℕ0
147146nn0zi 12275 . . . . . . . 8 6 ∈ ℤ
14837, 144, 145, 142, 147dpexpp1 31084 . . . . . . 7 ((0.01) · (10↑5)) = ((0.001) · (10↑6))
14937, 144rpdp2cl 31058 . . . . . . . 8 001 ∈ ℝ+
150 6p1e7 12051 . . . . . . . 8 (6 + 1) = 7
151104nn0zi 12275 . . . . . . . 8 7 ∈ ℤ
15237, 149, 150, 147, 151dpexpp1 31084 . . . . . . 7 ((0.001) · (10↑6)) = ((0.0001) · (10↑7))
153143, 148, 1523eqtrri 2771 . . . . . 6 ((0.0001) · (10↑7)) = ((0.1) · (10↑4))
154139, 153breqtrrdi 5112 . . . . 5 (𝜑 → 1 < ((0.0001) · (10↑7)))
15537, 149rpdp2cl 31058 . . . . . . . 8 0001 ∈ ℝ+
15637, 155rpdpcl 31079 . . . . . . 7 (0.0001) ∈ ℝ+
157156a1i 11 . . . . . 6 (𝜑 → (0.0001) ∈ ℝ+)
158 2nn0 12180 . . . . . . . . . . . 12 2 ∈ ℕ0
159158, 104deccl 12381 . . . . . . . . . . 11 27 ∈ ℕ0
160103, 159nn0expcli 13737 . . . . . . . . . 10 (10↑27) ∈ ℕ0
161160nn0rei 12174 . . . . . . . . 9 (10↑27) ∈ ℝ
162161a1i 11 . . . . . . . 8 (𝜑 → (10↑27) ∈ ℝ)
163160nn0ge0i 12190 . . . . . . . . 9 0 ≤ (10↑27)
164163a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ (10↑27))
165162, 164resqrtcld 15057 . . . . . . 7 (𝜑 → (√‘(10↑27)) ∈ ℝ)
166 expmul 13756 . . . . . . . . . . . . 13 ((10 ∈ ℂ ∧ 7 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (10↑(7 · 2)) = ((10↑7)↑2))
167120, 104, 158, 166mp3an 1459 . . . . . . . . . . . 12 (10↑(7 · 2)) = ((10↑7)↑2)
168 7t2e14 12475 . . . . . . . . . . . . 13 (7 · 2) = 14
169168oveq2i 7266 . . . . . . . . . . . 12 (10↑(7 · 2)) = (10↑14)
170167, 169eqtr3i 2768 . . . . . . . . . . 11 ((10↑7)↑2) = (10↑14)
171170fveq2i 6759 . . . . . . . . . 10 (√‘((10↑7)↑2)) = (√‘(10↑14))
172 expgt0 13744 . . . . . . . . . . . . 13 ((10 ∈ ℝ ∧ 7 ∈ ℤ ∧ 0 < 10) → 0 < (10↑7))
173109, 151, 121, 172mp3an 1459 . . . . . . . . . . . 12 0 < (10↑7)
17438, 106, 173ltleii 11028 . . . . . . . . . . 11 0 ≤ (10↑7)
175 sqrtsq 14909 . . . . . . . . . . 11 (((10↑7) ∈ ℝ ∧ 0 ≤ (10↑7)) → (√‘((10↑7)↑2)) = (10↑7))
176106, 174, 175mp2an 688 . . . . . . . . . 10 (√‘((10↑7)↑2)) = (10↑7)
177171, 176eqtr3i 2768 . . . . . . . . 9 (√‘(10↑14)) = (10↑7)
17815, 128deccl 12381 . . . . . . . . . . . . 13 14 ∈ ℕ0
179178nn0zi 12275 . . . . . . . . . . . 12 14 ∈ ℤ
180159nn0zi 12275 . . . . . . . . . . . 12 27 ∈ ℤ
181109, 179, 1803pm3.2i 1337 . . . . . . . . . . 11 (10 ∈ ℝ ∧ 14 ∈ ℤ ∧ 27 ∈ ℤ)
182 4lt10 12502 . . . . . . . . . . . . 13 4 < 10
183 1lt2 12074 . . . . . . . . . . . . 13 1 < 2
18415, 158, 128, 104, 182, 183decltc 12395 . . . . . . . . . . . 12 14 < 27
185113, 184pm3.2i 470 . . . . . . . . . . 11 (1 < 10 ∧ 14 < 27)
186 ltexp2a 13812 . . . . . . . . . . 11 (((10 ∈ ℝ ∧ 14 ∈ ℤ ∧ 27 ∈ ℤ) ∧ (1 < 10 ∧ 14 < 27)) → (10↑14) < (10↑27))
187181, 185, 186mp2an 688 . . . . . . . . . 10 (10↑14) < (10↑27)
188103, 178nn0expcli 13737 . . . . . . . . . . . . 13 (10↑14) ∈ ℕ0
189188nn0rei 12174 . . . . . . . . . . . 12 (10↑14) ∈ ℝ
190 expgt0 13744 . . . . . . . . . . . . . 14 ((10 ∈ ℝ ∧ 14 ∈ ℤ ∧ 0 < 10) → 0 < (10↑14))
191109, 179, 121, 190mp3an 1459 . . . . . . . . . . . . 13 0 < (10↑14)
19238, 189, 191ltleii 11028 . . . . . . . . . . . 12 0 ≤ (10↑14)
193189, 192pm3.2i 470 . . . . . . . . . . 11 ((10↑14) ∈ ℝ ∧ 0 ≤ (10↑14))
194161, 163pm3.2i 470 . . . . . . . . . . 11 ((10↑27) ∈ ℝ ∧ 0 ≤ (10↑27))
195 sqrtlt 14901 . . . . . . . . . . 11 ((((10↑14) ∈ ℝ ∧ 0 ≤ (10↑14)) ∧ ((10↑27) ∈ ℝ ∧ 0 ≤ (10↑27))) → ((10↑14) < (10↑27) ↔ (√‘(10↑14)) < (√‘(10↑27))))
196193, 194, 195mp2an 688 . . . . . . . . . 10 ((10↑14) < (10↑27) ↔ (√‘(10↑14)) < (√‘(10↑27)))
197187, 196mpbi 229 . . . . . . . . 9 (√‘(10↑14)) < (√‘(10↑27))
198177, 197eqbrtrri 5093 . . . . . . . 8 (10↑7) < (√‘(10↑27))
199198a1i 11 . . . . . . 7 (𝜑 → (10↑7) < (√‘(10↑27)))
200 hgt750lemd.0 . . . . . . . 8 (𝜑 → (10↑27) ≤ 𝑁)
201162, 164, 32, 34sqrtled 15066 . . . . . . . 8 (𝜑 → ((10↑27) ≤ 𝑁 ↔ (√‘(10↑27)) ≤ (√‘𝑁)))
202200, 201mpbid 231 . . . . . . 7 (𝜑 → (√‘(10↑27)) ≤ (√‘𝑁))
203107, 165, 35, 199, 202ltletrd 11065 . . . . . 6 (𝜑 → (10↑7) < (√‘𝑁))
204107, 35, 157, 203ltmul2dd 12757 . . . . 5 (𝜑 → ((0.0001) · (10↑7)) < ((0.0001) · (√‘𝑁)))
205100, 108, 52, 154, 204lttrd 11066 . . . 4 (𝜑 → 1 < ((0.0001) · (√‘𝑁)))
20614, 100, 52, 102, 205lttrd 11066 . . 3 (𝜑 → (log‘2) < ((0.0001) · (√‘𝑁)))
20711, 14, 36, 52, 99, 206lt2addd 11528 . 2 (𝜑 → (Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) + (log‘2)) < (((1.4262) · (√‘𝑁)) + ((0.0001) · (√‘𝑁))))
208 nfv 1918 . . 3 𝑖𝜑
209 nfcv 2906 . . 3 𝑖(log‘2)
210 2prm 16325 . . . 4 2 ∈ ℙ
211210a1i 11 . . 3 (𝜑 → 2 ∈ ℙ)
212 elndif 4059 . . . 4 (2 ∈ ℙ → ¬ 2 ∈ ((1...𝑁) ∖ ℙ))
213211, 212syl 17 . . 3 (𝜑 → ¬ 2 ∈ ((1...𝑁) ∖ ℙ))
214 fveq2 6756 . . . 4 (𝑖 = 2 → (Λ‘𝑖) = (Λ‘2))
215 vmaprm 26171 . . . . 5 (2 ∈ ℙ → (Λ‘2) = (log‘2))
216210, 215ax-mp 5 . . . 4 (Λ‘2) = (log‘2)
217214, 216eqtrdi 2795 . . 3 (𝑖 = 2 → (Λ‘𝑖) = (log‘2))
218 2cnd 11981 . . . 4 (𝜑 → 2 ∈ ℂ)
219 2ne0 12007 . . . . 5 2 ≠ 0
220219a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
221218, 220logcld 25631 . . 3 (𝜑 → (log‘2) ∈ ℂ)
222208, 209, 3, 211, 213, 76, 217, 221fsumsplitsn 15384 . 2 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) = (Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) + (log‘2)))
223146, 12rpdp2cl 31058 . . . . . 6 62 ∈ ℝ+
224158, 223rpdp2cl 31058 . . . . 5 262 ∈ ℝ+
225 3rp 12665 . . . . . . 7 3 ∈ ℝ+
226146, 225rpdp2cl 31058 . . . . . 6 63 ∈ ℝ+
227158, 226rpdp2cl 31058 . . . . 5 263 ∈ ℝ+
228 1p0e1 12027 . . . . 5 (1 + 0) = 1
229 4cn 11988 . . . . . . 7 4 ∈ ℂ
230229addid1i 11092 . . . . . 6 (4 + 0) = 4
231 2cn 11978 . . . . . . . 8 2 ∈ ℂ
232231addid1i 11092 . . . . . . 7 (2 + 0) = 2
233 3nn0 12181 . . . . . . . 8 3 ∈ ℕ0
234 eqid 2738 . . . . . . . . 9 62 = 62
235 eqid 2738 . . . . . . . . 9 01 = 01
236 6cn 11994 . . . . . . . . . 10 6 ∈ ℂ
237236addid1i 11092 . . . . . . . . 9 (6 + 0) = 6
238 2p1e3 12045 . . . . . . . . 9 (2 + 1) = 3
239146, 158, 37, 15, 234, 235, 237, 238decadd 12420 . . . . . . . 8 (62 + 01) = 63
240146, 158, 37, 15, 146, 233, 239dpadd 31087 . . . . . . 7 ((6.2) + (0.1)) = (6.3)
241146, 12, 37, 135, 146, 225, 158, 37, 232, 240dpadd2 31086 . . . . . 6 ((2.62) + (0.01)) = (2.63)
242158, 223, 37, 144, 158, 226, 128, 37, 230, 241dpadd2 31086 . . . . 5 ((4.262) + (0.001)) = (4.263)
243128, 224, 37, 149, 128, 227, 15, 37, 228, 242dpadd2 31086 . . . 4 ((1.4262) + (0.0001)) = (1.4263)
244243oveq1i 7265 . . 3 (((1.4262) + (0.0001)) · (√‘𝑁)) = ((1.4263) · (√‘𝑁))
24530recnd 10934 . . . 4 (𝜑 → (1.4262) ∈ ℂ)
24651recnd 10934 . . . 4 (𝜑 → (0.0001) ∈ ℂ)
24735recnd 10934 . . . 4 (𝜑 → (√‘𝑁) ∈ ℂ)
248245, 246, 247adddird 10931 . . 3 (𝜑 → (((1.4262) + (0.0001)) · (√‘𝑁)) = (((1.4262) · (√‘𝑁)) + ((0.0001) · (√‘𝑁))))
249244, 248eqtr3id 2793 . 2 (𝜑 → ((1.4263) · (√‘𝑁)) = (((1.4262) · (√‘𝑁)) + ((0.0001) · (√‘𝑁))))
250207, 222, 2493brtr4d 5102 1 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  5c5 11961  6c6 11962  7c7 11963  0cn0 12163  cz 12249  cdc 12366  +crp 12659  ...cfz 13168  cexp 13710  csqrt 14872  Σcsu 15325  cprime 16304  logclog 25615  θccht 26145  Λcvma 26146  ψcchp 26147  cdp2 31047  .cdp 31064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-ros336 32526
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-atan 25922  df-cht 26151  df-vma 26152  df-chp 26153  df-dp2 31048  df-dp 31065
This theorem is referenced by:  hgt750leme  32538
  Copyright terms: Public domain W3C validator