Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
2 | | diffi 8962 |
. . . . 5
⊢
((1...𝑁) ∈ Fin
→ ((1...𝑁) ∖
ℙ) ∈ Fin) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → ((1...𝑁) ∖ ℙ) ∈
Fin) |
4 | | vmaf 26268 |
. . . . . 6
⊢
Λ:ℕ⟶ℝ |
5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) →
Λ:ℕ⟶ℝ) |
6 | | fz1ssnn 13287 |
. . . . . . . 8
⊢
(1...𝑁) ⊆
ℕ |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ⊆ ℕ) |
8 | 7 | ssdifssd 4077 |
. . . . . 6
⊢ (𝜑 → ((1...𝑁) ∖ ℙ) ⊆
ℕ) |
9 | 8 | sselda 3921 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) → 𝑖 ∈
ℕ) |
10 | 5, 9 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) →
(Λ‘𝑖) ∈
ℝ) |
11 | 3, 10 | fsumrecl 15446 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈
ℝ) |
12 | | 2rp 12735 |
. . . . 5
⊢ 2 ∈
ℝ+ |
13 | 12 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
ℝ+) |
14 | 13 | relogcld 25778 |
. . 3
⊢ (𝜑 → (log‘2) ∈
ℝ) |
15 | | 1nn0 12249 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
16 | | 4re 12057 |
. . . . . . . 8
⊢ 4 ∈
ℝ |
17 | | 2re 12047 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
18 | | 6re 12063 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℝ |
19 | 18, 17 | pm3.2i 471 |
. . . . . . . . . . 11
⊢ (6 ∈
ℝ ∧ 2 ∈ ℝ) |
20 | | dp2cl 31154 |
. . . . . . . . . . 11
⊢ ((6
∈ ℝ ∧ 2 ∈ ℝ) → _62 ∈ ℝ) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . 10
⊢ _62 ∈ ℝ |
22 | 17, 21 | pm3.2i 471 |
. . . . . . . . 9
⊢ (2 ∈
ℝ ∧ _62 ∈
ℝ) |
23 | | dp2cl 31154 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ _62 ∈
ℝ) → _2_62 ∈ ℝ) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
⊢ _2_62 ∈ ℝ |
25 | 16, 24 | pm3.2i 471 |
. . . . . . 7
⊢ (4 ∈
ℝ ∧ _2_62 ∈ ℝ) |
26 | | dp2cl 31154 |
. . . . . . 7
⊢ ((4
∈ ℝ ∧ _2_62 ∈ ℝ) → _4_2_62
∈ ℝ) |
27 | 25, 26 | ax-mp 5 |
. . . . . 6
⊢ _4_2_62
∈ ℝ |
28 | | dpcl 31165 |
. . . . . 6
⊢ ((1
∈ ℕ0 ∧ _4_2_62
∈ ℝ) → (1._4_2_62) ∈ ℝ) |
29 | 15, 27, 28 | mp2an 689 |
. . . . 5
⊢ (1._4_2_62)
∈ ℝ |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → (1._4_2_62)
∈ ℝ) |
31 | | hgt750lemc.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
32 | 31 | nnred 11988 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℝ) |
33 | 31 | nnrpd 12770 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
34 | 33 | rpge0d 12776 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝑁) |
35 | 32, 34 | resqrtcld 15129 |
. . . 4
⊢ (𝜑 → (√‘𝑁) ∈
ℝ) |
36 | 30, 35 | remulcld 11005 |
. . 3
⊢ (𝜑 → ((1._4_2_62)
· (√‘𝑁))
∈ ℝ) |
37 | | 0nn0 12248 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
38 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
39 | | 1re 10975 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
40 | 38, 39 | pm3.2i 471 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ ∧ 1 ∈ ℝ) |
41 | | dp2cl 31154 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → _01 ∈ ℝ) |
42 | 40, 41 | ax-mp 5 |
. . . . . . . . . 10
⊢ _01 ∈ ℝ |
43 | 38, 42 | pm3.2i 471 |
. . . . . . . . 9
⊢ (0 ∈
ℝ ∧ _01 ∈
ℝ) |
44 | | dp2cl 31154 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ _01 ∈
ℝ) → _0_01 ∈ ℝ) |
45 | 43, 44 | ax-mp 5 |
. . . . . . . 8
⊢ _0_01 ∈ ℝ |
46 | 38, 45 | pm3.2i 471 |
. . . . . . 7
⊢ (0 ∈
ℝ ∧ _0_01 ∈ ℝ) |
47 | | dp2cl 31154 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ _0_01 ∈ ℝ) → _0_0_01
∈ ℝ) |
48 | 46, 47 | ax-mp 5 |
. . . . . 6
⊢ _0_0_01
∈ ℝ |
49 | | dpcl 31165 |
. . . . . 6
⊢ ((0
∈ ℕ0 ∧ _0_0_01
∈ ℝ) → (0._0_0_01) ∈ ℝ) |
50 | 37, 48, 49 | mp2an 689 |
. . . . 5
⊢ (0._0_0_01)
∈ ℝ |
51 | 50 | a1i 11 |
. . . 4
⊢ (𝜑 → (0._0_0_01)
∈ ℝ) |
52 | 51, 35 | remulcld 11005 |
. . 3
⊢ (𝜑 → ((0._0_0_01)
· (√‘𝑁))
∈ ℝ) |
53 | 31 | nnzd 12425 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
54 | | chpvalz 32608 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(ψ‘𝑁) =
Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖)) |
55 | 53, 54 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ψ‘𝑁) = Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖)) |
56 | | chtvalz 32609 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(θ‘𝑁) =
Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖)) |
57 | 53, 56 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖)) |
58 | | inss2 4163 |
. . . . . . . . . . 11
⊢
((1...𝑁) ∩
ℙ) ⊆ ℙ |
59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...𝑁) ∩ ℙ) ⊆
ℙ) |
60 | 59 | sselda 3921 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℙ) |
61 | | vmaprm 26266 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℙ →
(Λ‘𝑖) =
(log‘𝑖)) |
62 | 60, 61 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
(Λ‘𝑖) =
(log‘𝑖)) |
63 | 62 | sumeq2dv 15415 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖)) |
64 | 57, 63 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)) |
65 | 55, 64 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) = (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖))) |
66 | | infi 9043 |
. . . . . . . 8
⊢
((1...𝑁) ∈ Fin
→ ((1...𝑁) ∩
ℙ) ∈ Fin) |
67 | 1, 66 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((1...𝑁) ∩ ℙ) ∈
Fin) |
68 | 4 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
Λ:ℕ⟶ℝ) |
69 | | inss1 4162 |
. . . . . . . . . . . 12
⊢
((1...𝑁) ∩
ℙ) ⊆ (1...𝑁) |
70 | 69, 6 | sstri 3930 |
. . . . . . . . . . 11
⊢
((1...𝑁) ∩
ℙ) ⊆ ℕ |
71 | 70 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...𝑁) ∩ ℙ) ⊆
ℕ) |
72 | 71 | sselda 3921 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℕ) |
73 | 68, 72 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
(Λ‘𝑖) ∈
ℝ) |
74 | 73 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
(Λ‘𝑖) ∈
ℂ) |
75 | 67, 74 | fsumcl 15445 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) ∈
ℂ) |
76 | 10 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) →
(Λ‘𝑖) ∈
ℂ) |
77 | 3, 76 | fsumcl 15445 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈
ℂ) |
78 | | inindif 30863 |
. . . . . . . 8
⊢
(((1...𝑁) ∩
ℙ) ∩ ((1...𝑁)
∖ ℙ)) = ∅ |
79 | 78 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (((1...𝑁) ∩ ℙ) ∩ ((1...𝑁) ∖ ℙ)) =
∅) |
80 | | inundif 4412 |
. . . . . . . . 9
⊢
(((1...𝑁) ∩
ℙ) ∪ ((1...𝑁)
∖ ℙ)) = (1...𝑁) |
81 | 80 | eqcomi 2747 |
. . . . . . . 8
⊢
(1...𝑁) =
(((1...𝑁) ∩ ℙ)
∪ ((1...𝑁) ∖
ℙ)) |
82 | 81 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) = (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖
ℙ))) |
83 | 4 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) →
Λ:ℕ⟶ℝ) |
84 | 7 | sselda 3921 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℕ) |
85 | 83, 84 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℝ) |
86 | 85 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℂ) |
87 | 79, 82, 1, 86 | fsumsplit 15453 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) = (Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) + Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖))) |
88 | 75, 77, 87 | mvrladdd 11388 |
. . . . 5
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)) = Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖)) |
89 | 65, 88 | eqtr2d 2779 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) = ((ψ‘𝑁) − (θ‘𝑁))) |
90 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁)) |
91 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (θ‘𝑥) = (θ‘𝑁)) |
92 | 90, 91 | oveq12d 7293 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((ψ‘𝑥) − (θ‘𝑥)) = ((ψ‘𝑁) − (θ‘𝑁))) |
93 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (√‘𝑥) = (√‘𝑁)) |
94 | 93 | oveq2d 7291 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((1._4_2_62)
· (√‘𝑥))
= ((1._4_2_62)
· (√‘𝑁))) |
95 | 92, 94 | breq12d 5087 |
. . . . 5
⊢ (𝑥 = 𝑁 → (((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62)
· (√‘𝑥))
↔ ((ψ‘𝑁)
− (θ‘𝑁))
< ((1._4_2_62)
· (√‘𝑁)))) |
96 | | ax-ros336 32626 |
. . . . . 6
⊢
∀𝑥 ∈
ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62)
· (√‘𝑥)) |
97 | 96 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ+
((ψ‘𝑥) −
(θ‘𝑥)) <
((1._4_2_62)
· (√‘𝑥))) |
98 | 95, 97, 33 | rspcdva 3562 |
. . . 4
⊢ (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) < ((1._4_2_62)
· (√‘𝑁))) |
99 | 89, 98 | eqbrtrd 5096 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) < ((1._4_2_62)
· (√‘𝑁))) |
100 | 39 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
101 | | log2le1 26100 |
. . . . 5
⊢
(log‘2) < 1 |
102 | 101 | a1i 11 |
. . . 4
⊢ (𝜑 → (log‘2) <
1) |
103 | | 10nn0 12455 |
. . . . . . . . 9
⊢ ;10 ∈
ℕ0 |
104 | | 7nn0 12255 |
. . . . . . . . 9
⊢ 7 ∈
ℕ0 |
105 | 103, 104 | nn0expcli 13809 |
. . . . . . . 8
⊢ (;10↑7) ∈
ℕ0 |
106 | 105 | nn0rei 12244 |
. . . . . . 7
⊢ (;10↑7) ∈
ℝ |
107 | 106 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (;10↑7) ∈ ℝ) |
108 | 51, 107 | remulcld 11005 |
. . . . 5
⊢ (𝜑 → ((0._0_0_01)
· (;10↑7)) ∈
ℝ) |
109 | 103 | nn0rei 12244 |
. . . . . . . . . . 11
⊢ ;10 ∈ ℝ |
110 | | 0z 12330 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
111 | | 3z 12353 |
. . . . . . . . . . 11
⊢ 3 ∈
ℤ |
112 | 109, 110,
111 | 3pm3.2i 1338 |
. . . . . . . . . 10
⊢ (;10 ∈ ℝ ∧ 0 ∈
ℤ ∧ 3 ∈ ℤ) |
113 | | 1lt10 12576 |
. . . . . . . . . . 11
⊢ 1 <
;10 |
114 | | 3pos 12078 |
. . . . . . . . . . 11
⊢ 0 <
3 |
115 | 113, 114 | pm3.2i 471 |
. . . . . . . . . 10
⊢ (1 <
;10 ∧ 0 <
3) |
116 | | ltexp2a 13884 |
. . . . . . . . . 10
⊢ (((;10 ∈ ℝ ∧ 0 ∈
ℤ ∧ 3 ∈ ℤ) ∧ (1 < ;10 ∧ 0 < 3)) → (;10↑0) < (;10↑3)) |
117 | 112, 115,
116 | mp2an 689 |
. . . . . . . . 9
⊢ (;10↑0) < (;10↑3) |
118 | 103 | numexp0 16777 |
. . . . . . . . . 10
⊢ (;10↑0) = 1 |
119 | 118 | eqcomi 2747 |
. . . . . . . . 9
⊢ 1 =
(;10↑0) |
120 | 109 | recni 10989 |
. . . . . . . . . . 11
⊢ ;10 ∈ ℂ |
121 | | 10pos 12454 |
. . . . . . . . . . . 12
⊢ 0 <
;10 |
122 | 38, 121 | gtneii 11087 |
. . . . . . . . . . 11
⊢ ;10 ≠ 0 |
123 | | 4z 12354 |
. . . . . . . . . . 11
⊢ 4 ∈
ℤ |
124 | | expm1 13833 |
. . . . . . . . . . 11
⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 4 ∈ ℤ)
→ (;10↑(4 − 1)) =
((;10↑4) / ;10)) |
125 | 120, 122,
123, 124 | mp3an 1460 |
. . . . . . . . . 10
⊢ (;10↑(4 − 1)) = ((;10↑4) / ;10) |
126 | | 4m1e3 12102 |
. . . . . . . . . . 11
⊢ (4
− 1) = 3 |
127 | 126 | oveq2i 7286 |
. . . . . . . . . 10
⊢ (;10↑(4 − 1)) = (;10↑3) |
128 | | 4nn0 12252 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℕ0 |
129 | 103, 128 | nn0expcli 13809 |
. . . . . . . . . . . 12
⊢ (;10↑4) ∈
ℕ0 |
130 | 129 | nn0cni 12245 |
. . . . . . . . . . 11
⊢ (;10↑4) ∈
ℂ |
131 | | divrec2 11650 |
. . . . . . . . . . 11
⊢ (((;10↑4) ∈ ℂ ∧ ;10 ∈ ℂ ∧ ;10 ≠ 0) → ((;10↑4) / ;10) = ((1 / ;10) · (;10↑4))) |
132 | 130, 120,
122, 131 | mp3an 1460 |
. . . . . . . . . 10
⊢ ((;10↑4) / ;10) = ((1 / ;10) · (;10↑4)) |
133 | 125, 127,
132 | 3eqtr3ri 2775 |
. . . . . . . . 9
⊢ ((1 /
;10) · (;10↑4)) = (;10↑3) |
134 | 117, 119,
133 | 3brtr4i 5104 |
. . . . . . . 8
⊢ 1 <
((1 / ;10) · (;10↑4)) |
135 | | 1rp 12734 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ+ |
136 | 135 | dp0h 31176 |
. . . . . . . . 9
⊢ (0.1) =
(1 / ;10) |
137 | 136 | oveq1i 7285 |
. . . . . . . 8
⊢ ((0.1)
· (;10↑4)) = ((1 /
;10) · (;10↑4)) |
138 | 134, 137 | breqtrri 5101 |
. . . . . . 7
⊢ 1 <
((0.1) · (;10↑4)) |
139 | 138 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 < ((0.1) ·
(;10↑4))) |
140 | | 4p1e5 12119 |
. . . . . . . 8
⊢ (4 + 1) =
5 |
141 | | 5nn0 12253 |
. . . . . . . . 9
⊢ 5 ∈
ℕ0 |
142 | 141 | nn0zi 12345 |
. . . . . . . 8
⊢ 5 ∈
ℤ |
143 | 37, 135, 140, 123, 142 | dpexpp1 31182 |
. . . . . . 7
⊢ ((0.1)
· (;10↑4)) = ((0._01) · (;10↑5)) |
144 | 37, 135 | rpdp2cl 31156 |
. . . . . . . 8
⊢ _01 ∈
ℝ+ |
145 | | 5p1e6 12120 |
. . . . . . . 8
⊢ (5 + 1) =
6 |
146 | | 6nn0 12254 |
. . . . . . . . 9
⊢ 6 ∈
ℕ0 |
147 | 146 | nn0zi 12345 |
. . . . . . . 8
⊢ 6 ∈
ℤ |
148 | 37, 144, 145, 142, 147 | dpexpp1 31182 |
. . . . . . 7
⊢ ((0._01) · (;10↑5)) = ((0._0_01)
· (;10↑6)) |
149 | 37, 144 | rpdp2cl 31156 |
. . . . . . . 8
⊢ _0_01 ∈ ℝ+ |
150 | | 6p1e7 12121 |
. . . . . . . 8
⊢ (6 + 1) =
7 |
151 | 104 | nn0zi 12345 |
. . . . . . . 8
⊢ 7 ∈
ℤ |
152 | 37, 149, 150, 147, 151 | dpexpp1 31182 |
. . . . . . 7
⊢ ((0._0_01) · (;10↑6)) = ((0._0_0_01)
· (;10↑7)) |
153 | 143, 148,
152 | 3eqtrri 2771 |
. . . . . 6
⊢ ((0._0_0_01)
· (;10↑7)) = ((0.1)
· (;10↑4)) |
154 | 139, 153 | breqtrrdi 5116 |
. . . . 5
⊢ (𝜑 → 1 < ((0._0_0_01)
· (;10↑7))) |
155 | 37, 149 | rpdp2cl 31156 |
. . . . . . . 8
⊢ _0_0_01
∈ ℝ+ |
156 | 37, 155 | rpdpcl 31177 |
. . . . . . 7
⊢ (0._0_0_01)
∈ ℝ+ |
157 | 156 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (0._0_0_01)
∈ ℝ+) |
158 | | 2nn0 12250 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ0 |
159 | 158, 104 | deccl 12452 |
. . . . . . . . . . 11
⊢ ;27 ∈
ℕ0 |
160 | 103, 159 | nn0expcli 13809 |
. . . . . . . . . 10
⊢ (;10↑;27) ∈ ℕ0 |
161 | 160 | nn0rei 12244 |
. . . . . . . . 9
⊢ (;10↑;27) ∈ ℝ |
162 | 161 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (;10↑;27) ∈ ℝ) |
163 | 160 | nn0ge0i 12260 |
. . . . . . . . 9
⊢ 0 ≤
(;10↑;27) |
164 | 163 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (;10↑;27)) |
165 | 162, 164 | resqrtcld 15129 |
. . . . . . 7
⊢ (𝜑 → (√‘(;10↑;27)) ∈ ℝ) |
166 | | expmul 13828 |
. . . . . . . . . . . . 13
⊢ ((;10 ∈ ℂ ∧ 7 ∈
ℕ0 ∧ 2 ∈ ℕ0) → (;10↑(7 · 2)) = ((;10↑7)↑2)) |
167 | 120, 104,
158, 166 | mp3an 1460 |
. . . . . . . . . . . 12
⊢ (;10↑(7 · 2)) = ((;10↑7)↑2) |
168 | | 7t2e14 12546 |
. . . . . . . . . . . . 13
⊢ (7
· 2) = ;14 |
169 | 168 | oveq2i 7286 |
. . . . . . . . . . . 12
⊢ (;10↑(7 · 2)) = (;10↑;14) |
170 | 167, 169 | eqtr3i 2768 |
. . . . . . . . . . 11
⊢ ((;10↑7)↑2) = (;10↑;14) |
171 | 170 | fveq2i 6777 |
. . . . . . . . . 10
⊢
(√‘((;10↑7)↑2)) = (√‘(;10↑;14)) |
172 | | expgt0 13816 |
. . . . . . . . . . . . 13
⊢ ((;10 ∈ ℝ ∧ 7 ∈
ℤ ∧ 0 < ;10) → 0
< (;10↑7)) |
173 | 109, 151,
121, 172 | mp3an 1460 |
. . . . . . . . . . . 12
⊢ 0 <
(;10↑7) |
174 | 38, 106, 173 | ltleii 11098 |
. . . . . . . . . . 11
⊢ 0 ≤
(;10↑7) |
175 | | sqrtsq 14981 |
. . . . . . . . . . 11
⊢ (((;10↑7) ∈ ℝ ∧ 0 ≤
(;10↑7)) →
(√‘((;10↑7)↑2)) = (;10↑7)) |
176 | 106, 174,
175 | mp2an 689 |
. . . . . . . . . 10
⊢
(√‘((;10↑7)↑2)) = (;10↑7) |
177 | 171, 176 | eqtr3i 2768 |
. . . . . . . . 9
⊢
(√‘(;10↑;14)) = (;10↑7) |
178 | 15, 128 | deccl 12452 |
. . . . . . . . . . . . 13
⊢ ;14 ∈
ℕ0 |
179 | 178 | nn0zi 12345 |
. . . . . . . . . . . 12
⊢ ;14 ∈ ℤ |
180 | 159 | nn0zi 12345 |
. . . . . . . . . . . 12
⊢ ;27 ∈ ℤ |
181 | 109, 179,
180 | 3pm3.2i 1338 |
. . . . . . . . . . 11
⊢ (;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ ;27 ∈ ℤ) |
182 | | 4lt10 12573 |
. . . . . . . . . . . . 13
⊢ 4 <
;10 |
183 | | 1lt2 12144 |
. . . . . . . . . . . . 13
⊢ 1 <
2 |
184 | 15, 158, 128, 104, 182, 183 | decltc 12466 |
. . . . . . . . . . . 12
⊢ ;14 < ;27 |
185 | 113, 184 | pm3.2i 471 |
. . . . . . . . . . 11
⊢ (1 <
;10 ∧ ;14 < ;27) |
186 | | ltexp2a 13884 |
. . . . . . . . . . 11
⊢ (((;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ ;27 ∈ ℤ) ∧ (1 < ;10 ∧ ;14 < ;27)) → (;10↑;14) < (;10↑;27)) |
187 | 181, 185,
186 | mp2an 689 |
. . . . . . . . . 10
⊢ (;10↑;14) < (;10↑;27) |
188 | 103, 178 | nn0expcli 13809 |
. . . . . . . . . . . . 13
⊢ (;10↑;14) ∈ ℕ0 |
189 | 188 | nn0rei 12244 |
. . . . . . . . . . . 12
⊢ (;10↑;14) ∈ ℝ |
190 | | expgt0 13816 |
. . . . . . . . . . . . . 14
⊢ ((;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ 0 < ;10) → 0 < (;10↑;14)) |
191 | 109, 179,
121, 190 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ 0 <
(;10↑;14) |
192 | 38, 189, 191 | ltleii 11098 |
. . . . . . . . . . . 12
⊢ 0 ≤
(;10↑;14) |
193 | 189, 192 | pm3.2i 471 |
. . . . . . . . . . 11
⊢ ((;10↑;14) ∈ ℝ ∧ 0 ≤ (;10↑;14)) |
194 | 161, 163 | pm3.2i 471 |
. . . . . . . . . . 11
⊢ ((;10↑;27) ∈ ℝ ∧ 0 ≤ (;10↑;27)) |
195 | | sqrtlt 14973 |
. . . . . . . . . . 11
⊢ ((((;10↑;14) ∈ ℝ ∧ 0 ≤ (;10↑;14)) ∧ ((;10↑;27) ∈ ℝ ∧ 0 ≤ (;10↑;27))) → ((;10↑;14) < (;10↑;27) ↔ (√‘(;10↑;14)) < (√‘(;10↑;27)))) |
196 | 193, 194,
195 | mp2an 689 |
. . . . . . . . . 10
⊢ ((;10↑;14) < (;10↑;27) ↔ (√‘(;10↑;14)) < (√‘(;10↑;27))) |
197 | 187, 196 | mpbi 229 |
. . . . . . . . 9
⊢
(√‘(;10↑;14)) < (√‘(;10↑;27)) |
198 | 177, 197 | eqbrtrri 5097 |
. . . . . . . 8
⊢ (;10↑7) < (√‘(;10↑;27)) |
199 | 198 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (;10↑7) < (√‘(;10↑;27))) |
200 | | hgt750lemd.0 |
. . . . . . . 8
⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
201 | 162, 164,
32, 34 | sqrtled 15138 |
. . . . . . . 8
⊢ (𝜑 → ((;10↑;27) ≤ 𝑁 ↔ (√‘(;10↑;27)) ≤ (√‘𝑁))) |
202 | 200, 201 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (√‘(;10↑;27)) ≤ (√‘𝑁)) |
203 | 107, 165,
35, 199, 202 | ltletrd 11135 |
. . . . . 6
⊢ (𝜑 → (;10↑7) < (√‘𝑁)) |
204 | 107, 35, 157, 203 | ltmul2dd 12828 |
. . . . 5
⊢ (𝜑 → ((0._0_0_01)
· (;10↑7)) <
((0._0_0_01)
· (√‘𝑁))) |
205 | 100, 108,
52, 154, 204 | lttrd 11136 |
. . . 4
⊢ (𝜑 → 1 < ((0._0_0_01)
· (√‘𝑁))) |
206 | 14, 100, 52, 102, 205 | lttrd 11136 |
. . 3
⊢ (𝜑 → (log‘2) <
((0._0_0_01)
· (√‘𝑁))) |
207 | 11, 14, 36, 52, 99, 206 | lt2addd 11598 |
. 2
⊢ (𝜑 → (Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) + (log‘2)) <
(((1._4_2_62)
· (√‘𝑁))
+ ((0._0_0_01)
· (√‘𝑁)))) |
208 | | nfv 1917 |
. . 3
⊢
Ⅎ𝑖𝜑 |
209 | | nfcv 2907 |
. . 3
⊢
Ⅎ𝑖(log‘2) |
210 | | 2prm 16397 |
. . . 4
⊢ 2 ∈
ℙ |
211 | 210 | a1i 11 |
. . 3
⊢ (𝜑 → 2 ∈
ℙ) |
212 | | elndif 4063 |
. . . 4
⊢ (2 ∈
ℙ → ¬ 2 ∈ ((1...𝑁) ∖ ℙ)) |
213 | 211, 212 | syl 17 |
. . 3
⊢ (𝜑 → ¬ 2 ∈ ((1...𝑁) ∖
ℙ)) |
214 | | fveq2 6774 |
. . . 4
⊢ (𝑖 = 2 →
(Λ‘𝑖) =
(Λ‘2)) |
215 | | vmaprm 26266 |
. . . . 5
⊢ (2 ∈
ℙ → (Λ‘2) = (log‘2)) |
216 | 210, 215 | ax-mp 5 |
. . . 4
⊢
(Λ‘2) = (log‘2) |
217 | 214, 216 | eqtrdi 2794 |
. . 3
⊢ (𝑖 = 2 →
(Λ‘𝑖) =
(log‘2)) |
218 | | 2cnd 12051 |
. . . 4
⊢ (𝜑 → 2 ∈
ℂ) |
219 | | 2ne0 12077 |
. . . . 5
⊢ 2 ≠
0 |
220 | 219 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ≠ 0) |
221 | 218, 220 | logcld 25726 |
. . 3
⊢ (𝜑 → (log‘2) ∈
ℂ) |
222 | 208, 209,
3, 211, 213, 76, 217, 221 | fsumsplitsn 15456 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖) =
(Σ𝑖 ∈
((1...𝑁) ∖
ℙ)(Λ‘𝑖)
+ (log‘2))) |
223 | 146, 12 | rpdp2cl 31156 |
. . . . . 6
⊢ _62 ∈
ℝ+ |
224 | 158, 223 | rpdp2cl 31156 |
. . . . 5
⊢ _2_62 ∈ ℝ+ |
225 | | 3rp 12736 |
. . . . . . 7
⊢ 3 ∈
ℝ+ |
226 | 146, 225 | rpdp2cl 31156 |
. . . . . 6
⊢ _63 ∈
ℝ+ |
227 | 158, 226 | rpdp2cl 31156 |
. . . . 5
⊢ _2_63 ∈ ℝ+ |
228 | | 1p0e1 12097 |
. . . . 5
⊢ (1 + 0) =
1 |
229 | | 4cn 12058 |
. . . . . . 7
⊢ 4 ∈
ℂ |
230 | 229 | addid1i 11162 |
. . . . . 6
⊢ (4 + 0) =
4 |
231 | | 2cn 12048 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
232 | 231 | addid1i 11162 |
. . . . . . 7
⊢ (2 + 0) =
2 |
233 | | 3nn0 12251 |
. . . . . . . 8
⊢ 3 ∈
ℕ0 |
234 | | eqid 2738 |
. . . . . . . . 9
⊢ ;62 = ;62 |
235 | | eqid 2738 |
. . . . . . . . 9
⊢ ;01 = ;01 |
236 | | 6cn 12064 |
. . . . . . . . . 10
⊢ 6 ∈
ℂ |
237 | 236 | addid1i 11162 |
. . . . . . . . 9
⊢ (6 + 0) =
6 |
238 | | 2p1e3 12115 |
. . . . . . . . 9
⊢ (2 + 1) =
3 |
239 | 146, 158,
37, 15, 234, 235, 237, 238 | decadd 12491 |
. . . . . . . 8
⊢ (;62 + ;01) = ;63 |
240 | 146, 158,
37, 15, 146, 233, 239 | dpadd 31185 |
. . . . . . 7
⊢ ((6.2) +
(0.1)) = (6.3) |
241 | 146, 12, 37, 135, 146, 225, 158, 37, 232, 240 | dpadd2 31184 |
. . . . . 6
⊢ ((2._62) + (0._01)) = (2._63) |
242 | 158, 223,
37, 144, 158, 226, 128, 37, 230, 241 | dpadd2 31184 |
. . . . 5
⊢ ((4._2_62) + (0._0_01))
= (4._2_63) |
243 | 128, 224,
37, 149, 128, 227, 15, 37, 228, 242 | dpadd2 31184 |
. . . 4
⊢ ((1._4_2_62) +
(0._0_0_01))
= (1._4_2_63) |
244 | 243 | oveq1i 7285 |
. . 3
⊢
(((1._4_2_62) +
(0._0_0_01))
· (√‘𝑁))
= ((1._4_2_63)
· (√‘𝑁)) |
245 | 30 | recnd 11003 |
. . . 4
⊢ (𝜑 → (1._4_2_62)
∈ ℂ) |
246 | 51 | recnd 11003 |
. . . 4
⊢ (𝜑 → (0._0_0_01)
∈ ℂ) |
247 | 35 | recnd 11003 |
. . . 4
⊢ (𝜑 → (√‘𝑁) ∈
ℂ) |
248 | 245, 246,
247 | adddird 11000 |
. . 3
⊢ (𝜑 → (((1._4_2_62) +
(0._0_0_01))
· (√‘𝑁))
= (((1._4_2_62)
· (√‘𝑁))
+ ((0._0_0_01)
· (√‘𝑁)))) |
249 | 244, 248 | eqtr3id 2792 |
. 2
⊢ (𝜑 → ((1._4_2_63)
· (√‘𝑁))
= (((1._4_2_62)
· (√‘𝑁))
+ ((0._0_0_01)
· (√‘𝑁)))) |
250 | 207, 222,
249 | 3brtr4d 5106 |
1
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖) <
((1._4_2_63)
· (√‘𝑁))) |