| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax4fromc4 | Structured version Visualization version GIF version | ||
| Description: Rederivation of Axiom ax-4 1809 from ax-c4 38885, ax-c5 38884, ax-gen 1795 and minimal implicational calculus { ax-mp 5, ax-1 6, ax-2 7 }. See axc4 2321 for the derivation of ax-c4 38885 from ax-4 1809. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) Use ax-4 1809 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax4fromc4 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c4 38885 | . . 3 ⊢ (∀𝑥(∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) → (∀𝑥(𝜑 → 𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓))) | |
| 2 | ax-c5 38884 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 3 | ax-c5 38884 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | syl5 34 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
| 5 | 1, 4 | mpg 1797 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
| 6 | ax-c4 38885 | . 2 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-c5 38884 ax-c4 38885 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |