Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5 Structured version   Visualization version   GIF version

Theorem axc5 35052
Description: This theorem repeats sp 2167 under the name axc5 35052, so that the Metamath program "MM> VERIFY MARKUP" command will check that it matches axiom scheme ax-c5 35042. (Contributed by NM, 18-Aug-2017.) (Proof modification is discouraged.) Use sp 2167 instead. (New usage is discouraged.)
Assertion
Ref Expression
axc5 (∀𝑥𝜑𝜑)

Proof of Theorem axc5
StepHypRef Expression
1 sp 2167 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-12 2163
This theorem depends on definitions:  df-bi 199  df-ex 1824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator