Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5 Structured version   Visualization version   GIF version

Theorem axc5 36089
Description: This theorem repeats sp 2184 under the name axc5 36089, so that the Metamath program "MM> VERIFY MARKUP" command will check that it matches axiom scheme ax-c5 36079. (Contributed by NM, 18-Aug-2017.) (Proof modification is discouraged.) Use sp 2184 instead. (New usage is discouraged.)
Assertion
Ref Expression
axc5 (∀𝑥𝜑𝜑)

Proof of Theorem axc5
StepHypRef Expression
1 sp 2184 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-ex 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator