| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax10fromc7 | Structured version Visualization version GIF version | ||
| Description: Rederivation of Axiom ax-10 2141 from ax-c7 38886, ax-c4 38885, ax-c5 38884, ax-gen 1795 and propositional calculus. See axc7 2317 for the derivation of ax-c7 38886 from ax-10 2141. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) Use ax-10 2141 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax10fromc7 | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c4 38885 | . . 3 ⊢ (∀𝑥(∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ¬ ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)) | |
| 2 | ax-c5 38884 | . . . 4 ⊢ (∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ¬ ∀𝑥∀𝑥𝜑) | |
| 3 | ax-c4 38885 | . . . . 5 ⊢ (∀𝑥(∀𝑥𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑)) | |
| 4 | id 22 | . . . . 5 ⊢ (∀𝑥𝜑 → ∀𝑥𝜑) | |
| 5 | 3, 4 | mpg 1797 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| 6 | 2, 5 | nsyl 140 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ¬ ∀𝑥𝜑) |
| 7 | 1, 6 | mpg 1797 | . 2 ⊢ (∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| 8 | ax-c7 38886 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
| 9 | 7, 8 | nsyl4 158 | 1 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-c5 38884 ax-c4 38885 ax-c7 38886 |
| This theorem is referenced by: hba1-o 38898 axc5c711 38919 equidq 38925 |
| Copyright terms: Public domain | W3C validator |