Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax10fromc7 Structured version   Visualization version   GIF version

Theorem ax10fromc7 36836
Description: Rederivation of Axiom ax-10 2139 from ax-c7 36826, ax-c4 36825, ax-c5 36824, ax-gen 1799 and propositional calculus. See axc7 2315 for the derivation of ax-c7 36826 from ax-10 2139. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) Use ax-10 2139 instead. (New usage is discouraged.)
Assertion
Ref Expression
ax10fromc7 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Proof of Theorem ax10fromc7
StepHypRef Expression
1 ax-c4 36825 . . 3 (∀𝑥(∀𝑥 ¬ ∀𝑥𝑥𝜑 → ¬ ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑))
2 ax-c5 36824 . . . 4 (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ¬ ∀𝑥𝑥𝜑)
3 ax-c4 36825 . . . . 5 (∀𝑥(∀𝑥𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑 → ∀𝑥𝑥𝜑))
4 id 22 . . . . 5 (∀𝑥𝜑 → ∀𝑥𝜑)
53, 4mpg 1801 . . . 4 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
62, 5nsyl 140 . . 3 (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ¬ ∀𝑥𝜑)
71, 6mpg 1801 . 2 (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
8 ax-c7 36826 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥𝜑)
97, 8nsyl4 158 1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-c5 36824  ax-c4 36825  ax-c7 36826
This theorem is referenced by:  hba1-o  36838  axc5c711  36859  equidq  36865
  Copyright terms: Public domain W3C validator