Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1798 |
This theorem is referenced by: nfth 1804 nfnth 1805 alimi 1814 al2imi 1818 albii 1822 eximi 1837 exbii 1850 nfbii 1854 chvarvv 2002 sbtALT 2072 sbn1 2105 nf5i 2142 chvarfv 2233 hbn 2292 chvar 2395 equsb1 2495 equsb2 2496 nfsb4 2504 sbtr 2520 2eumo 2644 abbii 2808 vtoclf 3497 spcimgf 3528 spcgf 3530 euxfr2w 3655 euxfr2 3657 noel 4264 axsepgfromrep 5221 axnulALT 5228 csbex 5235 dtrucor 5294 eusv2nf 5318 axprlem3 5348 ssopab2i 5463 iotabii 6418 opabiotafun 6849 eufnfv 7105 snnex 7608 pwnex 7609 tz9.13 9549 unir1 9571 axac2 10222 axpowndlem3 10355 uzrdgfni 13678 uvtx01vtx 27764 setinds 33754 hbng 33784 bj-axd2d 34775 bj-exalimsi 34816 bj-hbsb3 34971 bj-nfs1 34974 sbn1ALT 35042 bj-issetw 35060 bj-abf 35094 bj-vtoclf 35100 bj-snsetex 35153 ax4fromc4 36908 ax10fromc7 36909 ax6fromc10 36910 equid1 36913 sn-axprlem3 40186 setindtrs 40847 frege97 41568 frege109 41580 pm11.11 41992 sbeqal1i 42017 axc5c4c711toc7 42022 axc5c4c711to11 42023 iotaequ 42047 mof0 46165 setrec2lem2 46400 vsetrec 46408 |
Copyright terms: Public domain | W3C validator |