| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1795 |
| This theorem is referenced by: nfth 1801 nfnth 1802 alimi 1811 al2imi 1815 albii 1819 eximi 1835 exbii 1848 nfbii 1852 chvarvv 1989 sbtALT 2070 sbn1 2108 nf5i 2147 chvarfv 2241 hbn 2295 chvar 2393 equsb1 2489 equsb2 2490 nfsb4 2498 sbtr 2514 2eumo 2635 abbii 2796 spcimgf 3516 vtoclfOLD 3531 spcgf 3557 euxfr2w 3691 euxfr2 3693 noel 4301 axsepgfromrep 5249 axnulALT 5259 csbex 5266 dtrucor 5326 eusv2nf 5350 axprlem3 5380 axprlem3OLD 5383 ssopab2i 5510 iotabii 6496 opabiotafun 6941 eufnfv 7203 snnex 7734 pwnex 7735 tz9.13 9744 unir1 9766 axac2 10419 axpowndlem3 10552 uzrdgfni 13923 uvtx01vtx 29324 setinds 35766 hbng 35796 bj-axd2d 36581 bj-exalimsi 36623 bj-hbsb3 36777 bj-nfs1 36780 sbn1ALT 36846 bj-issetw 36864 bj-abf 36897 bj-vtoclf 36903 bj-snsetex 36951 ax4fromc4 38887 ax10fromc7 38888 ax6fromc10 38889 equid1 38892 sn-axprlem3 42205 setindtrs 43014 frege97 43949 frege109 43961 pm11.11 44363 sbeqal1i 44388 axc5c4c711toc7 44393 axc5c4c711to11 44394 iotaequ 44418 mof0 48826 setrec2lem2 49683 vsetrec 49692 |
| Copyright terms: Public domain | W3C validator |