![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1790 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1790 |
This theorem is referenced by: nfth 1796 nfnth 1797 alimi 1806 al2imi 1810 albii 1814 eximi 1830 exbii 1843 nfbii 1847 chvarvv 1995 sbtALT 2065 sbn1 2098 nf5i 2135 chvarfv 2226 hbn 2284 chvar 2389 equsb1 2485 equsb2 2486 nfsb4 2494 sbtr 2510 2eumo 2633 abbii 2797 vtoclfOLD 3548 spcimgf 3574 spcgf 3576 euxfr2w 3713 euxfr2 3715 noel 4326 axsepgfromrep 5291 axnulALT 5298 csbex 5305 dtrucor 5365 eusv2nf 5389 axprlem3 5419 ssopab2i 5546 iotabii 6527 opabiotafun 6973 eufnfv 7235 snnex 7754 pwnex 7755 tz9.13 9806 unir1 9828 axac2 10481 axpowndlem3 10614 uzrdgfni 13947 uvtx01vtx 29197 setinds 35310 hbng 35340 bj-axd2d 36006 bj-exalimsi 36047 bj-hbsb3 36202 bj-nfs1 36205 sbn1ALT 36271 bj-issetw 36289 bj-abf 36323 bj-vtoclf 36329 bj-snsetex 36378 ax4fromc4 38303 ax10fromc7 38304 ax6fromc10 38305 equid1 38308 sn-axprlem3 41625 setindtrs 42368 frege97 43313 frege109 43325 pm11.11 43734 sbeqal1i 43759 axc5c4c711toc7 43764 axc5c4c711to11 43765 iotaequ 43789 mof0 47813 setrec2lem2 48048 vsetrec 48057 |
Copyright terms: Public domain | W3C validator |