| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1795 |
| This theorem is referenced by: nfth 1801 nfnth 1802 alimi 1811 al2imi 1815 albii 1819 eximi 1835 exbii 1848 nfbii 1852 chvarvv 1989 sbtALT 2070 sbn1 2108 nf5i 2147 chvarfv 2241 hbn 2295 chvar 2393 equsb1 2489 equsb2 2490 nfsb4 2498 sbtr 2514 2eumo 2635 abbii 2796 spcimgf 3507 vtoclfOLD 3522 spcgf 3548 euxfr2w 3682 euxfr2 3684 noel 4291 axsepgfromrep 5236 axnulALT 5246 csbex 5253 dtrucor 5313 eusv2nf 5337 axprlem3 5367 axprlem3OLD 5370 ssopab2i 5497 iotabii 6471 opabiotafun 6907 eufnfv 7169 snnex 7698 pwnex 7699 tz9.13 9706 unir1 9728 axac2 10379 axpowndlem3 10512 uzrdgfni 13883 uvtx01vtx 29360 setinds2regs 35065 unir1regs 35067 setinds 35751 hbng 35781 bj-axd2d 36566 bj-exalimsi 36608 bj-hbsb3 36762 bj-nfs1 36765 sbn1ALT 36831 bj-issetw 36849 bj-abf 36882 bj-vtoclf 36888 bj-snsetex 36936 ax4fromc4 38872 ax10fromc7 38873 ax6fromc10 38874 equid1 38877 sn-axprlem3 42190 setindtrs 42998 frege97 43933 frege109 43945 pm11.11 44347 sbeqal1i 44372 axc5c4c711toc7 44377 axc5c4c711to11 44378 iotaequ 44402 mof0 48810 setrec2lem2 49667 vsetrec 49676 |
| Copyright terms: Public domain | W3C validator |