![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1789 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1789 |
This theorem is referenced by: nfth 1795 nfnth 1796 alimi 1805 al2imi 1809 albii 1813 eximi 1829 exbii 1842 nfbii 1846 chvarvv 1994 sbtALT 2064 sbn1 2097 nf5i 2134 chvarfv 2228 hbn 2284 chvar 2388 equsb1 2484 equsb2 2485 nfsb4 2493 sbtr 2509 2eumo 2630 abbii 2795 vtoclfOLD 3544 spcimgf 3574 spcgf 3576 euxfr2w 3713 euxfr2 3715 noel 4331 axsepgfromrep 5297 axnulALT 5304 csbex 5311 dtrucor 5370 eusv2nf 5394 axprlem3 5424 ssopab2i 5551 iotabii 6532 opabiotafun 6976 eufnfv 7239 snnex 7759 pwnex 7760 tz9.13 9814 unir1 9836 axac2 10489 axpowndlem3 10622 uzrdgfni 13955 uvtx01vtx 29266 setinds 35444 hbng 35474 bj-axd2d 36140 bj-exalimsi 36181 bj-hbsb3 36336 bj-nfs1 36339 sbn1ALT 36405 bj-issetw 36423 bj-abf 36457 bj-vtoclf 36463 bj-snsetex 36512 ax4fromc4 38435 ax10fromc7 38436 ax6fromc10 38437 equid1 38440 sn-axprlem3 41774 setindtrs 42511 frege97 43455 frege109 43467 pm11.11 43876 sbeqal1i 43901 axc5c4c711toc7 43906 axc5c4c711to11 43907 iotaequ 43931 mof0 48002 setrec2lem2 48237 vsetrec 48246 |
Copyright terms: Public domain | W3C validator |