![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1793 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1793 |
This theorem is referenced by: nfth 1799 nfnth 1800 alimi 1809 al2imi 1813 albii 1817 eximi 1833 exbii 1846 nfbii 1850 chvarvv 1998 sbtALT 2069 sbn1 2107 nf5i 2146 chvarfv 2241 hbn 2299 chvar 2403 equsb1 2499 equsb2 2500 nfsb4 2508 sbtr 2524 2eumo 2645 abbii 2812 spcimgf 3562 vtoclfOLD 3577 spcgf 3604 euxfr2w 3742 euxfr2 3744 noel 4360 axsepgfromrep 5315 axnulALT 5322 csbex 5329 dtrucor 5389 eusv2nf 5413 axprlem3 5443 ssopab2i 5569 iotabii 6558 opabiotafun 7002 eufnfv 7266 snnex 7793 pwnex 7794 tz9.13 9860 unir1 9882 axac2 10535 axpowndlem3 10668 uzrdgfni 14009 uvtx01vtx 29432 setinds 35742 hbng 35772 bj-axd2d 36559 bj-exalimsi 36601 bj-hbsb3 36755 bj-nfs1 36758 sbn1ALT 36824 bj-issetw 36842 bj-abf 36875 bj-vtoclf 36881 bj-snsetex 36929 ax4fromc4 38850 ax10fromc7 38851 ax6fromc10 38852 equid1 38855 sn-axprlem3 42210 setindtrs 42982 frege97 43922 frege109 43934 pm11.11 44343 sbeqal1i 44368 axc5c4c711toc7 44373 axc5c4c711to11 44374 iotaequ 44398 mof0 48551 setrec2lem2 48786 vsetrec 48795 |
Copyright terms: Public domain | W3C validator |