| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1796 |
| This theorem is referenced by: nfth 1802 nfnth 1803 alimi 1812 al2imi 1816 albii 1820 eximi 1836 exbii 1849 nfbii 1853 chvarvv 1990 sbtALT 2072 sbn1 2110 nf5i 2149 chvarfv 2243 hbn 2297 chvar 2395 equsb1 2491 equsb2 2492 nfsb4 2500 sbtr 2516 2eumo 2637 abbii 2798 spcimgf 3503 spcgf 3541 euxfr2w 3674 euxfr2 3676 noel 4287 axsepgfromrep 5234 axnulALT 5244 csbex 5251 dtrucor 5311 eusv2nf 5335 axprlem3 5365 axprlem3OLD 5368 ssopab2i 5493 iotabii 6472 opabiotafun 6908 eufnfv 7169 snnex 7697 pwnex 7698 setinds 9645 tz9.13 9690 unir1 9712 axac2 10363 axpowndlem3 10496 uzrdgfni 13871 uvtx01vtx 29382 setinds2regs 35136 unir1regs 35138 hbng 35857 bj-axd2d 36644 bj-exalimsi 36686 bj-hbsb3 36840 bj-nfs1 36843 sbn1ALT 36909 bj-issetw 36927 bj-abf 36960 bj-vtoclf 36966 bj-snsetex 37014 ax4fromc4 38999 ax10fromc7 39000 ax6fromc10 39001 equid1 39004 sn-axprlem3 42316 setindtrs 43123 frege97 44058 frege109 44070 pm11.11 44472 sbeqal1i 44497 axc5c4c711toc7 44502 axc5c4c711to11 44503 iotaequ 44527 mof0 48943 setrec2lem2 49800 vsetrec 49809 |
| Copyright terms: Public domain | W3C validator |