![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1792 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1792 |
This theorem is referenced by: nfth 1798 nfnth 1799 alimi 1808 al2imi 1812 albii 1816 eximi 1832 exbii 1845 nfbii 1849 chvarvv 1996 sbtALT 2067 sbn1 2105 nf5i 2144 chvarfv 2238 hbn 2294 chvar 2398 equsb1 2494 equsb2 2495 nfsb4 2503 sbtr 2519 2eumo 2640 abbii 2807 spcimgf 3550 vtoclfOLD 3565 spcgf 3591 euxfr2w 3729 euxfr2 3731 noel 4344 axsepgfromrep 5300 axnulALT 5310 csbex 5317 dtrucor 5377 eusv2nf 5401 axprlem3 5431 axprlem3OLD 5434 ssopab2i 5560 iotabii 6548 opabiotafun 6989 eufnfv 7249 snnex 7777 pwnex 7778 tz9.13 9829 unir1 9851 axac2 10504 axpowndlem3 10637 uzrdgfni 13996 uvtx01vtx 29429 setinds 35760 hbng 35790 bj-axd2d 36576 bj-exalimsi 36618 bj-hbsb3 36772 bj-nfs1 36775 sbn1ALT 36841 bj-issetw 36859 bj-abf 36892 bj-vtoclf 36898 bj-snsetex 36946 ax4fromc4 38876 ax10fromc7 38877 ax6fromc10 38878 equid1 38881 sn-axprlem3 42235 setindtrs 43014 frege97 43950 frege109 43962 pm11.11 44370 sbeqal1i 44395 axc5c4c711toc7 44400 axc5c4c711to11 44401 iotaequ 44425 mof0 48668 setrec2lem2 48925 vsetrec 48934 |
Copyright terms: Public domain | W3C validator |