| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1796 |
| This theorem is referenced by: nfth 1802 nfnth 1803 alimi 1812 al2imi 1816 albii 1820 eximi 1836 exbii 1849 nfbii 1853 chvarvv 1990 sbtALT 2071 sbn1 2109 nf5i 2148 chvarfv 2242 hbn 2296 chvar 2394 equsb1 2490 equsb2 2491 nfsb4 2499 sbtr 2515 2eumo 2636 abbii 2797 spcimgf 3503 vtoclfOLD 3518 spcgf 3544 euxfr2w 3677 euxfr2 3679 noel 4286 axsepgfromrep 5230 axnulALT 5240 csbex 5247 dtrucor 5307 eusv2nf 5331 axprlem3 5361 axprlem3OLD 5364 ssopab2i 5488 iotabii 6462 opabiotafun 6897 eufnfv 7158 snnex 7686 pwnex 7687 tz9.13 9676 unir1 9698 axac2 10349 axpowndlem3 10482 uzrdgfni 13857 uvtx01vtx 29368 setinds2regs 35101 unir1regs 35103 setinds 35791 hbng 35821 bj-axd2d 36606 bj-exalimsi 36648 bj-hbsb3 36802 bj-nfs1 36805 sbn1ALT 36871 bj-issetw 36889 bj-abf 36922 bj-vtoclf 36928 bj-snsetex 36976 ax4fromc4 38912 ax10fromc7 38913 ax6fromc10 38914 equid1 38917 sn-axprlem3 42229 setindtrs 43037 frege97 43972 frege109 43984 pm11.11 44386 sbeqal1i 44411 axc5c4c711toc7 44416 axc5c4c711to11 44417 iotaequ 44441 mof0 48848 setrec2lem2 49705 vsetrec 49714 |
| Copyright terms: Public domain | W3C validator |