Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1799 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1799 |
This theorem is referenced by: nfth 1805 nfnth 1806 alimi 1815 al2imi 1819 albii 1823 eximi 1838 exbii 1851 nfbii 1855 chvarvv 2003 sbtALT 2073 sbn1 2107 nf5i 2144 chvarfv 2236 hbn 2295 chvar 2395 equsb1 2495 equsb2 2496 nfsb4 2504 sbtr 2520 2eumo 2644 abbii 2809 vtoclf 3487 spcimgf 3518 spcgf 3520 euxfr2w 3650 euxfr2 3652 noel 4261 axsepgfromrep 5216 axnulALT 5223 csbex 5230 dtrucor 5289 eusv2nf 5313 axprlem3 5343 ssopab2i 5456 iotabii 6403 opabiotafun 6831 eufnfv 7087 snnex 7586 pwnex 7587 tz9.13 9480 unir1 9502 axac2 10153 axpowndlem3 10286 uzrdgfni 13606 uvtx01vtx 27667 setinds 33660 hbng 33690 bj-axd2d 34702 bj-exalimsi 34743 bj-hbsb3 34898 bj-nfs1 34901 sbn1ALT 34969 bj-issetw 34987 bj-abf 35021 bj-vtoclf 35027 bj-snsetex 35080 ax4fromc4 36835 ax10fromc7 36836 ax6fromc10 36837 equid1 36840 sn-axprlem3 40114 setindtrs 40763 frege97 41457 frege109 41469 pm11.11 41881 sbeqal1i 41906 axc5c4c711toc7 41911 axc5c4c711to11 41912 iotaequ 41936 mof0 46053 setrec2lem2 46286 vsetrec 46294 |
Copyright terms: Public domain | W3C validator |