![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1798 |
This theorem is referenced by: nfth 1804 nfnth 1805 alimi 1814 al2imi 1818 albii 1822 eximi 1838 exbii 1851 nfbii 1855 chvarvv 2003 sbtALT 2073 sbn1 2106 nf5i 2143 chvarfv 2234 hbn 2292 chvar 2395 equsb1 2491 equsb2 2492 nfsb4 2500 sbtr 2516 2eumo 2639 abbii 2803 vtoclfOLD 3549 spcimgf 3580 spcgf 3582 euxfr2w 3717 euxfr2 3719 noel 4331 axsepgfromrep 5298 axnulALT 5305 csbex 5312 dtrucor 5370 eusv2nf 5394 axprlem3 5424 ssopab2i 5551 iotabii 6529 opabiotafun 6973 eufnfv 7231 snnex 7745 pwnex 7746 tz9.13 9786 unir1 9808 axac2 10461 axpowndlem3 10594 uzrdgfni 13923 uvtx01vtx 28654 setinds 34750 hbng 34780 bj-axd2d 35471 bj-exalimsi 35512 bj-hbsb3 35667 bj-nfs1 35670 sbn1ALT 35737 bj-issetw 35755 bj-abf 35789 bj-vtoclf 35795 bj-snsetex 35844 ax4fromc4 37764 ax10fromc7 37765 ax6fromc10 37766 equid1 37769 sn-axprlem3 41034 setindtrs 41764 frege97 42711 frege109 42723 pm11.11 43133 sbeqal1i 43158 axc5c4c711toc7 43163 axc5c4c711to11 43164 iotaequ 43188 mof0 47504 setrec2lem2 47739 vsetrec 47748 |
Copyright terms: Public domain | W3C validator |