![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1891 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1651 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1891 |
This theorem is referenced by: nfth 1897 nfnth 1898 alimi 1907 al2imi 1911 albii 1915 eximi 1930 exbii 1944 nfbii 1948 nf5i 2190 equsb1v 2296 hbn 2319 chvar 2402 equsb1 2485 equsb2 2486 nfsb4 2507 sbt 2537 sbtr 2539 mobii 2594 eubii 2625 moimi 2674 2eumo 2701 vtoclf 3445 vtocl 3446 vtocl2 3448 vtocl3 3449 spcimgf 3474 spcgf 3476 euxfr2 3587 axsep 4974 axnulALT 4981 csbex 4988 dtrucor 5041 eusv2nf 5065 ssopab2i 5199 iotabii 6086 opabiotafun 6484 eufnfv 6720 snnex 7200 pwnex 7201 tz9.13 8904 unir1 8926 axac2 9576 axpowndlem3 9709 uzrdgfni 13012 uvtx01vtx 26644 uvtxa01vtx0OLD 26646 setinds 32195 hbng 32226 bj-axd2d 33082 bj-exalimsi 33119 bj-ssbimi 33130 bj-ssbbii 33131 bj-hbsb3 33218 bj-nfs1 33221 bj-chvarv 33230 bj-chvarvv 33231 bj-sbtv 33264 bj-axsep 33289 bj-dtrucor 33296 bj-vexw 33345 bj-vexwv 33347 bj-issetw 33351 bj-abf 33394 bj-vtoclf 33400 bj-snsetex 33443 ax4fromc4 34915 ax10fromc7 34916 ax6fromc10 34917 equid1 34920 setindtrs 38377 frege97 39036 frege109 39048 pm11.11 39355 sbeqal1i 39381 axc5c4c711toc7 39386 axc5c4c711to11 39387 iotaequ 39411 setrec2lem2 43240 vsetrec 43248 |
Copyright terms: Public domain | W3C validator |