| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1794 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1794 |
| This theorem is referenced by: nfth 1800 nfnth 1801 alimi 1810 al2imi 1814 albii 1818 eximi 1834 exbii 1847 nfbii 1851 chvarvv 1997 sbtALT 2068 sbn1 2106 nf5i 2145 chvarfv 2239 hbn 2294 chvar 2398 equsb1 2494 equsb2 2495 nfsb4 2503 sbtr 2519 2eumo 2640 abbii 2801 spcimgf 3533 vtoclfOLD 3548 spcgf 3574 euxfr2w 3708 euxfr2 3710 noel 4318 axsepgfromrep 5274 axnulALT 5284 csbex 5291 dtrucor 5351 eusv2nf 5375 axprlem3 5405 axprlem3OLD 5408 ssopab2i 5535 iotabii 6526 opabiotafun 6969 eufnfv 7231 snnex 7760 pwnex 7761 tz9.13 9813 unir1 9835 axac2 10488 axpowndlem3 10621 uzrdgfni 13981 uvtx01vtx 29343 setinds 35754 hbng 35784 bj-axd2d 36569 bj-exalimsi 36611 bj-hbsb3 36765 bj-nfs1 36768 sbn1ALT 36834 bj-issetw 36852 bj-abf 36885 bj-vtoclf 36891 bj-snsetex 36939 ax4fromc4 38870 ax10fromc7 38871 ax6fromc10 38872 equid1 38875 sn-axprlem3 42231 setindtrs 43015 frege97 43950 frege109 43962 pm11.11 44365 sbeqal1i 44390 axc5c4c711toc7 44395 axc5c4c711to11 44396 iotaequ 44420 mof0 48724 setrec2lem2 49308 vsetrec 49317 |
| Copyright terms: Public domain | W3C validator |