| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1795 |
| This theorem is referenced by: nfth 1801 nfnth 1802 alimi 1811 al2imi 1815 albii 1819 eximi 1835 exbii 1848 nfbii 1852 chvarvv 1989 sbtALT 2070 sbn1 2108 nf5i 2147 chvarfv 2241 hbn 2296 chvar 2400 equsb1 2496 equsb2 2497 nfsb4 2505 sbtr 2521 2eumo 2642 abbii 2803 spcimgf 3534 vtoclfOLD 3549 spcgf 3575 euxfr2w 3708 euxfr2 3710 noel 4318 axsepgfromrep 5269 axnulALT 5279 csbex 5286 dtrucor 5346 eusv2nf 5370 axprlem3 5400 axprlem3OLD 5403 ssopab2i 5530 iotabii 6521 opabiotafun 6964 eufnfv 7226 snnex 7757 pwnex 7758 tz9.13 9810 unir1 9832 axac2 10485 axpowndlem3 10618 uzrdgfni 13981 uvtx01vtx 29381 setinds 35801 hbng 35831 bj-axd2d 36616 bj-exalimsi 36658 bj-hbsb3 36812 bj-nfs1 36815 sbn1ALT 36881 bj-issetw 36899 bj-abf 36932 bj-vtoclf 36938 bj-snsetex 36986 ax4fromc4 38917 ax10fromc7 38918 ax6fromc10 38919 equid1 38922 sn-axprlem3 42235 setindtrs 43024 frege97 43959 frege109 43971 pm11.11 44373 sbeqal1i 44398 axc5c4c711toc7 44403 axc5c4c711to11 44404 iotaequ 44428 mof0 48796 setrec2lem2 49538 vsetrec 49547 |
| Copyright terms: Public domain | W3C validator |