MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax7v1 Structured version   Visualization version   GIF version

Theorem ax7v1 2018
Description: First of two weakened versions of ax7v 2017, with an extra disjoint variable condition on 𝑥, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax7v1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧

Proof of Theorem ax7v1
StepHypRef Expression
1 ax7v 2017 1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-7 2016
This theorem is referenced by:  equid  2020  ax7  2024  ax13  2374  dtru  5263  sn-dtru  39910
  Copyright terms: Public domain W3C validator