MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exneq Structured version   Visualization version   GIF version

Theorem exneq 5373
Description: Given any set (the "𝑦 " in the statement), there exists a set not equal to it.

The same statement without disjoint variable condition is false, since we do not have 𝑥¬ 𝑥 = 𝑥. This theorem is proved directly from set theory axioms (no class definitions) and does not depend on ax-ext 2708, ax-sep 5238, or ax-pow 5303 nor auxiliary logical axiom schemes ax-10 2136 to ax-13 2371. See dtruALT 5326 for a shorter proof using more axioms, and dtruALT2 5308 for a proof using ax-pow 5303 instead of ax-pr 5367. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2371. (Revised by BJ, 31-May-2019.) Avoid ax-8 2107. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2170. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5367 instead of ax-pow 5303. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5374. (Revised by BJ, 2-Jan-2025.)

Assertion
Ref Expression
exneq 𝑥 ¬ 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem exneq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exexneq 5372 . 2 𝑧𝑤 ¬ 𝑧 = 𝑤
2 equeuclr 2025 . . . . . 6 (𝑤 = 𝑦 → (𝑧 = 𝑦𝑧 = 𝑤))
32con3d 152 . . . . 5 (𝑤 = 𝑦 → (¬ 𝑧 = 𝑤 → ¬ 𝑧 = 𝑦))
4 ax7v1 2012 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
54con3d 152 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑧 = 𝑦 → ¬ 𝑥 = 𝑦))
65spimevw 1997 . . . . 5 𝑧 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
73, 6syl6 35 . . . 4 (𝑤 = 𝑦 → (¬ 𝑧 = 𝑤 → ∃𝑥 ¬ 𝑥 = 𝑦))
8 ax7v1 2012 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 = 𝑦𝑤 = 𝑦))
98con3d 152 . . . . . 6 (𝑥 = 𝑤 → (¬ 𝑤 = 𝑦 → ¬ 𝑥 = 𝑦))
109spimevw 1997 . . . . 5 𝑤 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
1110a1d 25 . . . 4 𝑤 = 𝑦 → (¬ 𝑧 = 𝑤 → ∃𝑥 ¬ 𝑥 = 𝑦))
127, 11pm2.61i 182 . . 3 𝑧 = 𝑤 → ∃𝑥 ¬ 𝑥 = 𝑦)
1312exlimivv 1934 . 2 (∃𝑧𝑤 ¬ 𝑧 = 𝑤 → ∃𝑥 ¬ 𝑥 = 𝑦)
141, 13ax-mp 5 1 𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1781
This theorem is referenced by:  dtru  5374
  Copyright terms: Public domain W3C validator