Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dtruALT2 | Structured version Visualization version GIF version |
Description: Alternate proof of dtru 5288 using ax-pr 5347 instead of ax-pow 5283. (Contributed by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dtruALT2 | ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0inp0 5276 | . . . 4 ⊢ (𝑦 = ∅ → ¬ 𝑦 = {∅}) | |
2 | snex 5349 | . . . . 5 ⊢ {∅} ∈ V | |
3 | eqeq2 2750 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑦 = 𝑥 ↔ 𝑦 = {∅})) | |
4 | 3 | notbid 317 | . . . . 5 ⊢ (𝑥 = {∅} → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = {∅})) |
5 | 2, 4 | spcev 3535 | . . . 4 ⊢ (¬ 𝑦 = {∅} → ∃𝑥 ¬ 𝑦 = 𝑥) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥) |
7 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
8 | eqeq2 2750 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑦 = 𝑥 ↔ 𝑦 = ∅)) | |
9 | 8 | notbid 317 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = ∅)) |
10 | 7, 9 | spcev 3535 | . . 3 ⊢ (¬ 𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥) |
11 | 6, 10 | pm2.61i 182 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
12 | exnal 1830 | . . 3 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑦 = 𝑥) | |
13 | eqcom 2745 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
14 | 13 | albii 1823 | . . 3 ⊢ (∀𝑥 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) |
15 | 12, 14 | xchbinx 333 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
16 | 11, 15 | mpbi 229 | 1 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 = wceq 1539 ∃wex 1783 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: fvprc 6748 |
Copyright terms: Public domain | W3C validator |