Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax7 | Structured version Visualization version GIF version |
Description: Proof of ax-7 2011
from ax7v1 2013 and ax7v2 2014 (and earlier axioms), proving
sufficiency of the conjunction of the latter two weakened versions of
ax7v 2012, which is itself a weakened version of ax-7 2011.
Note that the weakened version of ax-7 2011 obtained by adding a disjoint variable condition on 𝑥, 𝑧 (resp. on 𝑦, 𝑧) does not permit, together with the other axioms, to prove reflexivity (resp. symmetry). (Contributed by BJ, 7-Dec-2020.) |
Ref | Expression |
---|---|
ax7 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v2 2014 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝑥 = 𝑦 → 𝑡 = 𝑦)) | |
2 | ax7v2 2014 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝑥 = 𝑧 → 𝑡 = 𝑧)) | |
3 | ax7v1 2013 | . . . . . 6 ⊢ (𝑡 = 𝑦 → (𝑡 = 𝑧 → 𝑦 = 𝑧)) | |
4 | 3 | imp 407 | . . . . 5 ⊢ ((𝑡 = 𝑦 ∧ 𝑡 = 𝑧) → 𝑦 = 𝑧) |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑥 = 𝑡 → ((𝑡 = 𝑦 ∧ 𝑡 = 𝑧) → 𝑦 = 𝑧)) |
6 | 1, 2, 5 | syl2and 608 | . . 3 ⊢ (𝑥 = 𝑡 → ((𝑥 = 𝑦 ∧ 𝑥 = 𝑧) → 𝑦 = 𝑧)) |
7 | ax6evr 2018 | . . 3 ⊢ ∃𝑡 𝑥 = 𝑡 | |
8 | 6, 7 | exlimiiv 1934 | . 2 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑧) → 𝑦 = 𝑧) |
9 | 8 | ex 413 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: equcomi 2020 equtr 2024 equequ1 2028 cbvaev 2056 aeveq 2059 axc16i 2436 equvel 2456 mo4 2566 axextnd 10347 bj-dtru 34999 wl-aetr 35688 wl-exeq 35693 wl-aleq 35694 wl-nfeqfb 35695 equcomi1 36914 hbequid 36923 equidqe 36936 aev-o 36945 ax6e2eq 42177 ax6e2eqVD 42527 2reu8i 44605 |
Copyright terms: Public domain | W3C validator |