MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax7 Structured version   Visualization version   GIF version

Theorem ax7 2013
Description: Proof of ax-7 2005 from ax7v1 2007 and ax7v2 2008 (and earlier axioms), proving sufficiency of the conjunction of the latter two weakened versions of ax7v 2006, which is itself a weakened version of ax-7 2005.

Note that the weakened version of ax-7 2005 obtained by adding a disjoint variable condition on 𝑥, 𝑧 (resp. on 𝑦, 𝑧) does not permit, together with the other axioms, to prove reflexivity (resp. symmetry). (Contributed by BJ, 7-Dec-2020.)

Assertion
Ref Expression
ax7 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))

Proof of Theorem ax7
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ax7v2 2008 . . . 4 (𝑥 = 𝑡 → (𝑥 = 𝑦𝑡 = 𝑦))
2 ax7v2 2008 . . . 4 (𝑥 = 𝑡 → (𝑥 = 𝑧𝑡 = 𝑧))
3 ax7v1 2007 . . . . . 6 (𝑡 = 𝑦 → (𝑡 = 𝑧𝑦 = 𝑧))
43imp 406 . . . . 5 ((𝑡 = 𝑦𝑡 = 𝑧) → 𝑦 = 𝑧)
54a1i 11 . . . 4 (𝑥 = 𝑡 → ((𝑡 = 𝑦𝑡 = 𝑧) → 𝑦 = 𝑧))
61, 2, 5syl2and 608 . . 3 (𝑥 = 𝑡 → ((𝑥 = 𝑦𝑥 = 𝑧) → 𝑦 = 𝑧))
7 ax6evr 2012 . . 3 𝑡 𝑥 = 𝑡
86, 7exlimiiv 1929 . 2 ((𝑥 = 𝑦𝑥 = 𝑧) → 𝑦 = 𝑧)
98ex 412 1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777
This theorem is referenced by:  equcomi  2014  equtr  2018  equequ1  2022  cbvaev  2051  aeveq  2054  axc16i  2439  equvel  2459  mo4  2564  axextnd  10629  in-ax8  36207  ss-ax8  36208  wl-aetr  37510  wl-exeq  37515  wl-aleq  37516  wl-nfeqfb  37517  equcomi1  38882  hbequid  38891  equidqe  38904  aev-o  38913  ax6e2eq  44555  ax6e2eqVD  44905  et-equeucl  46828  2reu8i  47063
  Copyright terms: Public domain W3C validator