MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax7 Structured version   Visualization version   GIF version

Theorem ax7 2017
Description: Proof of ax-7 2009 from ax7v1 2011 and ax7v2 2012 (and earlier axioms), proving sufficiency of the conjunction of the latter two weakened versions of ax7v 2010, which is itself a weakened version of ax-7 2009.

Note that the weakened version of ax-7 2009 obtained by adding a disjoint variable condition on 𝑥, 𝑧 (resp. on 𝑦, 𝑧) does not permit, together with the other axioms, to prove reflexivity (resp. symmetry). (Contributed by BJ, 7-Dec-2020.)

Assertion
Ref Expression
ax7 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))

Proof of Theorem ax7
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ax7v2 2012 . . . 4 (𝑥 = 𝑡 → (𝑥 = 𝑦𝑡 = 𝑦))
2 ax7v2 2012 . . . 4 (𝑥 = 𝑡 → (𝑥 = 𝑧𝑡 = 𝑧))
3 ax7v1 2011 . . . . . 6 (𝑡 = 𝑦 → (𝑡 = 𝑧𝑦 = 𝑧))
43imp 406 . . . . 5 ((𝑡 = 𝑦𝑡 = 𝑧) → 𝑦 = 𝑧)
54a1i 11 . . . 4 (𝑥 = 𝑡 → ((𝑡 = 𝑦𝑡 = 𝑧) → 𝑦 = 𝑧))
61, 2, 5syl2and 608 . . 3 (𝑥 = 𝑡 → ((𝑥 = 𝑦𝑥 = 𝑧) → 𝑦 = 𝑧))
7 ax6evr 2016 . . 3 𝑡 𝑥 = 𝑡
86, 7exlimiiv 1932 . 2 ((𝑥 = 𝑦𝑥 = 𝑧) → 𝑦 = 𝑧)
98ex 412 1 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  equcomi  2018  equtr  2022  equequ1  2026  cbvaev  2056  aeveq  2059  axc16i  2438  equvel  2458  mo4  2563  axextnd  10489  in-ax8  36289  ss-ax8  36290  wl-aetr  37594  wl-exeq  37599  wl-aleq  37600  wl-nfeqfb  37601  equcomi1  39019  hbequid  39028  equidqe  39041  aev-o  39050  ax6e2eq  44674  ax6e2eqVD  45023  et-equeucl  46994  2reu8i  47237
  Copyright terms: Public domain W3C validator