| Step | Hyp | Ref
| Expression |
| 1 | | equvinv 2028 |
. . . 4
⊢ (𝑦 = 𝑧 ↔ ∃𝑤(𝑤 = 𝑦 ∧ 𝑤 = 𝑧)) |
| 2 | | ax13lem1 2379 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝑦 → (𝑤 = 𝑦 → ∀𝑥 𝑤 = 𝑦)) |
| 3 | 2 | imp 406 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ∀𝑥 𝑤 = 𝑦) |
| 4 | | ax13lem1 2379 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝑧 → (𝑤 = 𝑧 → ∀𝑥 𝑤 = 𝑧)) |
| 5 | 4 | imp 406 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝑧 ∧ 𝑤 = 𝑧) → ∀𝑥 𝑤 = 𝑧) |
| 6 | | ax7v1 2009 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 → 𝑦 = 𝑧)) |
| 7 | 6 | imp 406 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑦 ∧ 𝑤 = 𝑧) → 𝑦 = 𝑧) |
| 8 | 7 | alanimi 1816 |
. . . . . . . 8
⊢
((∀𝑥 𝑤 = 𝑦 ∧ ∀𝑥 𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧) |
| 9 | 3, 5, 8 | syl2an 596 |
. . . . . . 7
⊢ (((¬
𝑥 = 𝑦 ∧ 𝑤 = 𝑦) ∧ (¬ 𝑥 = 𝑧 ∧ 𝑤 = 𝑧)) → ∀𝑥 𝑦 = 𝑧) |
| 10 | 9 | an4s 660 |
. . . . . 6
⊢ (((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) ∧ (𝑤 = 𝑦 ∧ 𝑤 = 𝑧)) → ∀𝑥 𝑦 = 𝑧) |
| 11 | 10 | ex 412 |
. . . . 5
⊢ ((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → ((𝑤 = 𝑦 ∧ 𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧)) |
| 12 | 11 | exlimdv 1933 |
. . . 4
⊢ ((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → (∃𝑤(𝑤 = 𝑦 ∧ 𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧)) |
| 13 | 1, 12 | biimtrid 242 |
. . 3
⊢ ((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| 14 | 13 | ex 412 |
. 2
⊢ (¬
𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))) |
| 15 | | ax13b 2031 |
. 2
⊢ ((¬
𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))) |
| 16 | 14, 15 | mpbir 231 |
1
⊢ (¬
𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |