Step | Hyp | Ref
| Expression |
1 | | equvinv 2032 |
. . . 4
⊢ (𝑦 = 𝑧 ↔ ∃𝑤(𝑤 = 𝑦 ∧ 𝑤 = 𝑧)) |
2 | | ax13lem1 2374 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝑦 → (𝑤 = 𝑦 → ∀𝑥 𝑤 = 𝑦)) |
3 | 2 | imp 407 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ∀𝑥 𝑤 = 𝑦) |
4 | | ax13lem1 2374 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝑧 → (𝑤 = 𝑧 → ∀𝑥 𝑤 = 𝑧)) |
5 | 4 | imp 407 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝑧 ∧ 𝑤 = 𝑧) → ∀𝑥 𝑤 = 𝑧) |
6 | | ax7v1 2013 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 → 𝑦 = 𝑧)) |
7 | 6 | imp 407 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑦 ∧ 𝑤 = 𝑧) → 𝑦 = 𝑧) |
8 | 7 | alanimi 1819 |
. . . . . . . 8
⊢
((∀𝑥 𝑤 = 𝑦 ∧ ∀𝑥 𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧) |
9 | 3, 5, 8 | syl2an 596 |
. . . . . . 7
⊢ (((¬
𝑥 = 𝑦 ∧ 𝑤 = 𝑦) ∧ (¬ 𝑥 = 𝑧 ∧ 𝑤 = 𝑧)) → ∀𝑥 𝑦 = 𝑧) |
10 | 9 | an4s 657 |
. . . . . 6
⊢ (((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) ∧ (𝑤 = 𝑦 ∧ 𝑤 = 𝑧)) → ∀𝑥 𝑦 = 𝑧) |
11 | 10 | ex 413 |
. . . . 5
⊢ ((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → ((𝑤 = 𝑦 ∧ 𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧)) |
12 | 11 | exlimdv 1936 |
. . . 4
⊢ ((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → (∃𝑤(𝑤 = 𝑦 ∧ 𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧)) |
13 | 1, 12 | syl5bi 241 |
. . 3
⊢ ((¬
𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
14 | 13 | ex 413 |
. 2
⊢ (¬
𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))) |
15 | | ax13b 2035 |
. 2
⊢ ((¬
𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))) |
16 | 14, 15 | mpbir 230 |
1
⊢ (¬
𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |