|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711toc5 | Structured version Visualization version GIF version | ||
| Description: Rederivation of ax-c5 38884 from axc5c711 38919. Only propositional calculus is used by the rederivation. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axc5c711toc5 | ⊢ (∀𝑥𝜑 → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | axc5c711 38919 | . 2 ⊢ ((∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2157 ax-c5 38884 ax-c4 38885 ax-c7 38886 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |