Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c711toc7 Structured version   Visualization version   GIF version

Theorem axc5c711toc7 36861
Description: Rederivation of ax-c7 36826 from axc5c711 36859. Note that ax-c7 36826 and ax-11 2156 are not used by the rederivation. The use of alimi 1815 (which uses ax-c5 36824) is allowed since we have already proved axc5c711toc5 36860. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c711toc7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Proof of Theorem axc5c711toc7
StepHypRef Expression
1 hba1-o 36838 . . . . . 6 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21con3i 154 . . . . 5 (¬ ∀𝑥𝑥𝜑 → ¬ ∀𝑥𝜑)
32alimi 1815 . . . 4 (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
43sps-o 36849 . . 3 (∀𝑥𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
54con3i 154 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝑥 ¬ ∀𝑥𝑥𝜑)
6 pm2.21 123 . 2 (¬ ∀𝑥𝑥 ¬ ∀𝑥𝑥𝜑 → (∀𝑥𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥𝜑))
7 axc5c711 36859 . 2 ((∀𝑥𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥𝜑) → 𝜑)
85, 6, 73syl 18 1 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-11 2156  ax-c5 36824  ax-c4 36825  ax-c7 36826
This theorem is referenced by:  axc5c711to11  36862
  Copyright terms: Public domain W3C validator