Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711toc7 | Structured version Visualization version GIF version |
Description: Rederivation of ax-c7 36826 from axc5c711 36859. Note that ax-c7 36826 and ax-11 2156 are not used by the rederivation. The use of alimi 1815 (which uses ax-c5 36824) is allowed since we have already proved axc5c711toc5 36860. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc5c711toc7 | ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1-o 36838 | . . . . . 6 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
2 | 1 | con3i 154 | . . . . 5 ⊢ (¬ ∀𝑥∀𝑥𝜑 → ¬ ∀𝑥𝜑) |
3 | 2 | alimi 1815 | . . . 4 ⊢ (∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
4 | 3 | sps-o 36849 | . . 3 ⊢ (∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
5 | 4 | con3i 154 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥𝜑) |
6 | pm2.21 123 | . 2 ⊢ (¬ ∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → (∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥𝜑)) | |
7 | axc5c711 36859 | . 2 ⊢ ((∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑) | |
8 | 5, 6, 7 | 3syl 18 | 1 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-11 2156 ax-c5 36824 ax-c4 36825 ax-c7 36826 |
This theorem is referenced by: axc5c711to11 36862 |
Copyright terms: Public domain | W3C validator |