| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-11 | Structured version Visualization version GIF version | ||
| Description: Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax11w 2135) but is used as an auxiliary axiom scheme to achieve metalogical completeness. Use its weak version alcomimw 2044 when it allows to avoid dependence on ax-11 2162. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| ax-11 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . . 4 wff 𝜑 | |
| 2 | vy | . . . 4 setvar 𝑦 | |
| 3 | 1, 2 | wal 1539 | . . 3 wff ∀𝑦𝜑 |
| 4 | vx | . . 3 setvar 𝑥 | |
| 5 | 3, 4 | wal 1539 | . 2 wff ∀𝑥∀𝑦𝜑 |
| 6 | 1, 4 | wal 1539 | . . 3 wff ∀𝑥𝜑 |
| 7 | 6, 2 | wal 1539 | . 2 wff ∀𝑦∀𝑥𝜑 |
| 8 | 5, 7 | wi 4 | 1 wff (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: alcoms 2163 alcom 2164 hbal 2172 hbald 2173 hbsbwOLD 2177 nfald 2331 hbae 2433 hbaltg 35870 bj-hbalt 36746 bj-nnflemaa 36827 bj-nfald 37202 hbae-o 39022 axc711 39033 axc5c711 39037 ax12indalem 39064 ax12inda2ALT 39065 pm11.71 44514 axc5c4c711 44518 axc11next 44523 hbalg 44672 hbalgVD 45021 hbexgVD 45022 ichal 47590 |
| Copyright terms: Public domain | W3C validator |