Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-11 | Structured version Visualization version GIF version |
Description: Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax11w 2129) but is used as an auxiliary axiom scheme to achieve metalogical completeness. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
ax-11 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . 4 wff 𝜑 | |
2 | vy | . . . 4 setvar 𝑦 | |
3 | 1, 2 | wal 1539 | . . 3 wff ∀𝑦𝜑 |
4 | vx | . . 3 setvar 𝑥 | |
5 | 3, 4 | wal 1539 | . 2 wff ∀𝑥∀𝑦𝜑 |
6 | 1, 4 | wal 1539 | . . 3 wff ∀𝑥𝜑 |
7 | 6, 2 | wal 1539 | . 2 wff ∀𝑦∀𝑥𝜑 |
8 | 5, 7 | wi 4 | 1 wff (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
This axiom is referenced by: alcoms 2158 alcom 2159 hbal 2170 hbald 2171 hbsbw 2172 nfald 2325 hbae 2432 hbaltg 33762 bj-hbalt 34842 bj-nnflemaa 34923 bj-nfald 35287 hbae-o 36896 axc711 36907 axc5c711 36911 ax12indalem 36938 ax12inda2ALT 36939 pm11.71 41968 axc5c4c711 41972 axc11next 41977 hbalg 42128 hbalgVD 42478 hbexgVD 42479 ichal 44870 |
Copyright terms: Public domain | W3C validator |