MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-11 Structured version   Visualization version   GIF version

Axiom ax-11 2150
Description: Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax11w 2124) but is used as an auxiliary axiom scheme to achieve metalogical completeness. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
ax-11 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Detailed syntax breakdown of Axiom ax-11
StepHypRef Expression
1 wph . . . 4 wff 𝜑
2 vy . . . 4 setvar 𝑦
31, 2wal 1599 . . 3 wff 𝑦𝜑
4 vx . . 3 setvar 𝑥
53, 4wal 1599 . 2 wff 𝑥𝑦𝜑
61, 4wal 1599 . . 3 wff 𝑥𝜑
76, 2wal 1599 . 2 wff 𝑦𝑥𝜑
85, 7wi 4 1 wff (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
This axiom is referenced by:  alcoms  2151  alcom  2152  hbal  2160  hbald  2161  nfald  2304  hbae  2397  hbaltg  32301  bj-hbalt  33260  hbae-o  35057  axc711  35068  axc5c711  35072  ax12indalem  35099  ax12inda2ALT  35100  pm11.71  39553  axc5c4c711  39557  axc11next  39562  hbalg  39715  hbalgVD  40074  hbexgVD  40075
  Copyright terms: Public domain W3C validator