![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-11 | Structured version Visualization version GIF version |
Description: Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax11w 2162) but is used as an auxiliary axiom scheme to achieve metalogical completeness. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
ax-11 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . 4 wff 𝜑 | |
2 | vy | . . . 4 setvar 𝑦 | |
3 | 1, 2 | wal 1629 | . . 3 wff ∀𝑦𝜑 |
4 | vx | . . 3 setvar 𝑥 | |
5 | 3, 4 | wal 1629 | . 2 wff ∀𝑥∀𝑦𝜑 |
6 | 1, 4 | wal 1629 | . . 3 wff ∀𝑥𝜑 |
7 | 6, 2 | wal 1629 | . 2 wff ∀𝑦∀𝑥𝜑 |
8 | 5, 7 | wi 4 | 1 wff (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
This axiom is referenced by: alcoms 2191 hbal 2192 alcom 2193 hbald 2197 nfald 2327 hbae 2467 hbaltg 32049 bj-hbalt 33008 hbae-o 34711 axc711 34722 axc5c711 34726 ax12indalem 34753 ax12inda2ALT 34754 pm11.71 39123 axc5c4c711 39128 axc11next 39133 hbalg 39296 hbalgVD 39663 hbexgVD 39664 |
Copyright terms: Public domain | W3C validator |