| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-11 | Structured version Visualization version GIF version | ||
| Description: Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax11w 2130) but is used as an auxiliary axiom scheme to achieve metalogical completeness. Use its weak version alcomimw 2042 when it allows to avoid dependence on ax-11 2157. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| ax-11 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . . 4 wff 𝜑 | |
| 2 | vy | . . . 4 setvar 𝑦 | |
| 3 | 1, 2 | wal 1538 | . . 3 wff ∀𝑦𝜑 |
| 4 | vx | . . 3 setvar 𝑥 | |
| 5 | 3, 4 | wal 1538 | . 2 wff ∀𝑥∀𝑦𝜑 |
| 6 | 1, 4 | wal 1538 | . . 3 wff ∀𝑥𝜑 |
| 7 | 6, 2 | wal 1538 | . 2 wff ∀𝑦∀𝑥𝜑 |
| 8 | 5, 7 | wi 4 | 1 wff (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: alcoms 2158 alcom 2159 hbal 2167 hbald 2168 hbsbwOLD 2172 nfald 2328 hbae 2435 hbaltg 35771 bj-hbalt 36645 bj-nnflemaa 36726 bj-nfald 37101 hbae-o 38867 axc711 38878 axc5c711 38882 ax12indalem 38909 ax12inda2ALT 38910 pm11.71 44369 axc5c4c711 44373 axc11next 44378 hbalg 44528 hbalgVD 44877 hbexgVD 44878 ichal 47428 |
| Copyright terms: Public domain | W3C validator |