MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-11 Structured version   Visualization version   GIF version

Axiom ax-11 2160
Description: Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax11w 2132) but is used as an auxiliary axiom scheme to achieve metalogical completeness. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
ax-11 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Detailed syntax breakdown of Axiom ax-11
StepHypRef Expression
1 wph . . . 4 wff 𝜑
2 vy . . . 4 setvar 𝑦
31, 2wal 1541 . . 3 wff 𝑦𝜑
4 vx . . 3 setvar 𝑥
53, 4wal 1541 . 2 wff 𝑥𝑦𝜑
61, 4wal 1541 . . 3 wff 𝑥𝜑
76, 2wal 1541 . 2 wff 𝑦𝑥𝜑
85, 7wi 4 1 wff (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
This axiom is referenced by:  alcoms  2161  alcom  2162  hbal  2173  hbald  2174  hbsbw  2175  nfald  2329  hbae  2432  hbaltg  33664  bj-hbalt  34765  bj-nnflemaa  34846  bj-nfald  35211  hbae-o  36823  axc711  36834  axc5c711  36838  ax12indalem  36865  ax12inda2ALT  36866  pm11.71  41877  axc5c4c711  41881  axc11next  41886  hbalg  42037  hbalgVD  42387  hbexgVD  42388  ichal  44779
  Copyright terms: Public domain W3C validator