![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711 | Structured version Visualization version GIF version |
Description: Proof of a single axiom that can replace ax-c5 38865, ax-c7 38867, and ax-11 2155 in a subsystem that includes these axioms plus ax-c4 38866 and ax-gen 1792 (and propositional calculus). See axc5c711toc5 38901, axc5c711toc7 38902, and axc5c711to11 38903 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 38893. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc5c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c5 38865 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | ax10fromc7 38877 | . . . 4 ⊢ (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑) | |
3 | ax-c7 38867 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
5 | 4 | alimi 1808 | . . . 4 ⊢ (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
6 | ax-11 2155 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) |
9 | ax-c5 38865 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
10 | 8, 9 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-11 2155 ax-c5 38865 ax-c4 38866 ax-c7 38867 |
This theorem is referenced by: axc5c711toc5 38901 axc5c711toc7 38902 axc5c711to11 38903 |
Copyright terms: Public domain | W3C validator |