Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c711 Structured version   Visualization version   GIF version

Theorem axc5c711 36213
Description: Proof of a single axiom that can replace ax-c5 36178, ax-c7 36180, and ax-11 2159 in a subsystem that includes these axioms plus ax-c4 36179 and ax-gen 1797 (and propositional calculus). See axc5c711toc5 36214, axc5c711toc7 36215, and axc5c711to11 36216 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 36206. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c711 ((∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem axc5c711
StepHypRef Expression
1 ax-c5 36178 . . 3 (∀𝑦𝜑𝜑)
2 ax10fromc7 36190 . . . 4 (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑)
3 ax-c7 36180 . . . . . 6 (¬ ∀𝑥 ¬ ∀𝑥𝑦𝜑 → ∀𝑦𝜑)
43con1i 149 . . . . 5 (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥𝑦𝜑)
54alimi 1813 . . . 4 (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦𝑥 ¬ ∀𝑥𝑦𝜑)
6 ax-11 2159 . . . 4 (∀𝑦𝑥 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑)
72, 5, 63syl 18 . . 3 (¬ ∀𝑦𝜑 → ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑)
81, 7nsyl4 161 . 2 (¬ ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑𝜑)
9 ax-c5 36178 . 2 (∀𝑥𝜑𝜑)
108, 9ja 189 1 ((∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-11 2159  ax-c5 36178  ax-c4 36179  ax-c7 36180
This theorem is referenced by:  axc5c711toc5  36214  axc5c711toc7  36215  axc5c711to11  36216
  Copyright terms: Public domain W3C validator