| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711 | Structured version Visualization version GIF version | ||
| Description: Proof of a single axiom that can replace ax-c5 38883, ax-c7 38885, and ax-11 2158 in a subsystem that includes these axioms plus ax-c4 38884 and ax-gen 1795 (and propositional calculus). See axc5c711toc5 38919, axc5c711toc7 38920, and axc5c711to11 38921 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 38911. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc5c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 38883 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 2 | ax10fromc7 38895 | . . . 4 ⊢ (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑) | |
| 3 | ax-c7 38885 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
| 4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
| 5 | 4 | alimi 1811 | . . . 4 ⊢ (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
| 6 | ax-11 2158 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
| 7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
| 8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) |
| 9 | ax-c5 38883 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 10 | 8, 9 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2158 ax-c5 38883 ax-c4 38884 ax-c7 38885 |
| This theorem is referenced by: axc5c711toc5 38919 axc5c711toc7 38920 axc5c711to11 38921 |
| Copyright terms: Public domain | W3C validator |