| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711 | Structured version Visualization version GIF version | ||
| Description: Proof of a single axiom that can replace ax-c5 39002, ax-c7 39004, and ax-11 2162 in a subsystem that includes these axioms plus ax-c4 39003 and ax-gen 1796 (and propositional calculus). See axc5c711toc5 39038, axc5c711toc7 39039, and axc5c711to11 39040 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 39030. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc5c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 39002 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 2 | ax10fromc7 39014 | . . . 4 ⊢ (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑) | |
| 3 | ax-c7 39004 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
| 4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
| 5 | 4 | alimi 1812 | . . . 4 ⊢ (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
| 6 | ax-11 2162 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
| 7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
| 8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) |
| 9 | ax-c5 39002 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 10 | 8, 9 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-11 2162 ax-c5 39002 ax-c4 39003 ax-c7 39004 |
| This theorem is referenced by: axc5c711toc5 39038 axc5c711toc7 39039 axc5c711to11 39040 |
| Copyright terms: Public domain | W3C validator |