![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711 | Structured version Visualization version GIF version |
Description: Proof of a single axiom that can replace ax-c5 38209, ax-c7 38211, and ax-11 2146 in a subsystem that includes these axioms plus ax-c4 38210 and ax-gen 1789 (and propositional calculus). See axc5c711toc5 38245, axc5c711toc7 38246, and axc5c711to11 38247 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 38237. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc5c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c5 38209 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | ax10fromc7 38221 | . . . 4 ⊢ (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑) | |
3 | ax-c7 38211 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
5 | 4 | alimi 1805 | . . . 4 ⊢ (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
6 | ax-11 2146 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) |
9 | ax-c5 38209 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
10 | 8, 9 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-11 2146 ax-c5 38209 ax-c4 38210 ax-c7 38211 |
This theorem is referenced by: axc5c711toc5 38245 axc5c711toc7 38246 axc5c711to11 38247 |
Copyright terms: Public domain | W3C validator |