Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c711 Structured version   Visualization version   GIF version

Theorem axc5c711 39037
Description: Proof of a single axiom that can replace ax-c5 39002, ax-c7 39004, and ax-11 2162 in a subsystem that includes these axioms plus ax-c4 39003 and ax-gen 1796 (and propositional calculus). See axc5c711toc5 39038, axc5c711toc7 39039, and axc5c711to11 39040 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 39030. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c711 ((∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem axc5c711
StepHypRef Expression
1 ax-c5 39002 . . 3 (∀𝑦𝜑𝜑)
2 ax10fromc7 39014 . . . 4 (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑)
3 ax-c7 39004 . . . . . 6 (¬ ∀𝑥 ¬ ∀𝑥𝑦𝜑 → ∀𝑦𝜑)
43con1i 147 . . . . 5 (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥𝑦𝜑)
54alimi 1812 . . . 4 (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦𝑥 ¬ ∀𝑥𝑦𝜑)
6 ax-11 2162 . . . 4 (∀𝑦𝑥 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑)
72, 5, 63syl 18 . . 3 (¬ ∀𝑦𝜑 → ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑)
81, 7nsyl4 158 . 2 (¬ ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑𝜑)
9 ax-c5 39002 . 2 (∀𝑥𝜑𝜑)
108, 9ja 186 1 ((∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-11 2162  ax-c5 39002  ax-c4 39003  ax-c7 39004
This theorem is referenced by:  axc5c711toc5  39038  axc5c711toc7  39039  axc5c711to11  39040
  Copyright terms: Public domain W3C validator