![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711 | Structured version Visualization version GIF version |
Description: Proof of a single axiom that can replace ax-c5 38839, ax-c7 38841, and ax-11 2158 in a subsystem that includes these axioms plus ax-c4 38840 and ax-gen 1793 (and propositional calculus). See axc5c711toc5 38875, axc5c711toc7 38876, and axc5c711to11 38877 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 38867. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc5c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c5 38839 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | ax10fromc7 38851 | . . . 4 ⊢ (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑) | |
3 | ax-c7 38841 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
5 | 4 | alimi 1809 | . . . 4 ⊢ (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
6 | ax-11 2158 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) |
9 | ax-c5 38839 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
10 | 8, 9 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-11 2158 ax-c5 38839 ax-c4 38840 ax-c7 38841 |
This theorem is referenced by: axc5c711toc5 38875 axc5c711toc7 38876 axc5c711to11 38877 |
Copyright terms: Public domain | W3C validator |