Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c711 Structured version   Visualization version   GIF version

Theorem axc5c711 36859
Description: Proof of a single axiom that can replace ax-c5 36824, ax-c7 36826, and ax-11 2156 in a subsystem that includes these axioms plus ax-c4 36825 and ax-gen 1799 (and propositional calculus). See axc5c711toc5 36860, axc5c711toc7 36861, and axc5c711to11 36862 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 36852. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c711 ((∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem axc5c711
StepHypRef Expression
1 ax-c5 36824 . . 3 (∀𝑦𝜑𝜑)
2 ax10fromc7 36836 . . . 4 (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑)
3 ax-c7 36826 . . . . . 6 (¬ ∀𝑥 ¬ ∀𝑥𝑦𝜑 → ∀𝑦𝜑)
43con1i 147 . . . . 5 (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥𝑦𝜑)
54alimi 1815 . . . 4 (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦𝑥 ¬ ∀𝑥𝑦𝜑)
6 ax-11 2156 . . . 4 (∀𝑦𝑥 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑)
72, 5, 63syl 18 . . 3 (¬ ∀𝑦𝜑 → ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑)
81, 7nsyl4 158 . 2 (¬ ∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑𝜑)
9 ax-c5 36824 . 2 (∀𝑥𝜑𝜑)
108, 9ja 186 1 ((∀𝑥𝑦 ¬ ∀𝑥𝑦𝜑 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-11 2156  ax-c5 36824  ax-c4 36825  ax-c7 36826
This theorem is referenced by:  axc5c711toc5  36860  axc5c711toc7  36861  axc5c711to11  36862
  Copyright terms: Public domain W3C validator