Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711 | Structured version Visualization version GIF version |
Description: Proof of a single axiom that can replace ax-c5 36824, ax-c7 36826, and ax-11 2156 in a subsystem that includes these axioms plus ax-c4 36825 and ax-gen 1799 (and propositional calculus). See axc5c711toc5 36860, axc5c711toc7 36861, and axc5c711to11 36862 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 36852. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc5c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c5 36824 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | ax10fromc7 36836 | . . . 4 ⊢ (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑) | |
3 | ax-c7 36826 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
5 | 4 | alimi 1815 | . . . 4 ⊢ (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
6 | ax-11 2156 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) |
9 | ax-c5 36824 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
10 | 8, 9 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-11 2156 ax-c5 36824 ax-c4 36825 ax-c7 36826 |
This theorem is referenced by: axc5c711toc5 36860 axc5c711toc7 36861 axc5c711to11 36862 |
Copyright terms: Public domain | W3C validator |