| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711 | Structured version Visualization version GIF version | ||
| Description: Proof of a single axiom that can replace ax-c5 38921, ax-c7 38923, and ax-11 2160 in a subsystem that includes these axioms plus ax-c4 38922 and ax-gen 1796 (and propositional calculus). See axc5c711toc5 38957, axc5c711toc7 38958, and axc5c711to11 38959 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 38949. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc5c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 38921 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 2 | ax10fromc7 38933 | . . . 4 ⊢ (¬ ∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦𝜑) | |
| 3 | ax-c7 38923 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦𝜑) | |
| 4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
| 5 | 4 | alimi 1812 | . . . 4 ⊢ (∀𝑦 ¬ ∀𝑦𝜑 → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑) |
| 6 | ax-11 2160 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
| 7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀𝑦𝜑 → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
| 8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) |
| 9 | ax-c5 38921 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 10 | 8, 9 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-11 2160 ax-c5 38921 ax-c4 38922 ax-c7 38923 |
| This theorem is referenced by: axc5c711toc5 38957 axc5c711toc7 38958 axc5c711to11 38959 |
| Copyright terms: Public domain | W3C validator |