MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axexte Structured version   Visualization version   GIF version

Theorem axexte 2710
Description: The axiom of extensionality (ax-ext 2709) restated so that it postulates the existence of a set 𝑧 given two arbitrary sets 𝑥 and 𝑦. This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003.)
Assertion
Ref Expression
axexte 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axexte
StepHypRef Expression
1 ax-ext 2709 . 2 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
2 19.36v 1991 . 2 (∃𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦) ↔ (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
31, 2mpbir 230 1 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator