MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axexte Structured version   Visualization version   GIF version

Theorem axexte 2712
Description: The axiom of extensionality (ax-ext 2711) restated so that it postulates the existence of a set 𝑧 given two arbitrary sets 𝑥 and 𝑦. This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003.)
Assertion
Ref Expression
axexte 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axexte
StepHypRef Expression
1 ax-ext 2711 . 2 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
2 19.36v 1987 . 2 (∃𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦) ↔ (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
31, 2mpbir 231 1 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator