Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axextg | Structured version Visualization version GIF version |
Description: A generalization of the axiom of extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Remove dependencies on ax-10 2139, ax-12 2173, ax-13 2372. (Revised by BJ, 12-Jul-2019.) (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
axextg | ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2123 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) | |
2 | 1 | bibi1d 343 | . . . 4 ⊢ (𝑤 = 𝑥 → ((𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
3 | 2 | albidv 1924 | . . 3 ⊢ (𝑤 = 𝑥 → (∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
4 | equequ1 2029 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 ↔ 𝑥 = 𝑦)) | |
5 | 3, 4 | imbi12d 344 | . 2 ⊢ (𝑤 = 𝑥 → ((∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) → 𝑤 = 𝑦) ↔ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦))) |
6 | ax-ext 2709 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) → 𝑤 = 𝑦) | |
7 | 5, 6 | chvarvv 2003 | 1 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: axextb 2712 axextnd 10278 axextdist 33681 |
Copyright terms: Public domain | W3C validator |