| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.36v | Structured version Visualization version GIF version | ||
| Description: Version of 19.36 2230 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| 19.36v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1877 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.9v 1983 | . . 3 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
| 3 | 2 | imbi2i 336 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.12vvv 1988 19.12vv 2349 ax13lem2 2381 axexte 2709 spcimdv 3593 bnj1090 34993 bj-spimvwt 36670 bj-spcimdv 36896 bj-spcimdvv 36897 19.36vv 44402 |
| Copyright terms: Public domain | W3C validator |