Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.36v | Structured version Visualization version GIF version |
Description: Version of 19.36 2226 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) |
Ref | Expression |
---|---|
19.36v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1881 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.9v 1988 | . . 3 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
3 | 2 | imbi2i 335 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 19.12vvv 1993 19.12vv 2347 ax13lem2 2376 axexte 2710 spcimdv 3522 bnj1090 32859 bj-spimvwt 34777 bj-spcimdv 35007 bj-spcimdvv 35008 19.36vv 41890 |
Copyright terms: Public domain | W3C validator |