| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.36v | Structured version Visualization version GIF version | ||
| Description: Version of 19.36 2233 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| 19.36v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1878 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.9v 1985 | . . 3 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
| 3 | 2 | imbi2i 336 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.12vvv 1995 19.12vv 2347 ax13lem2 2376 axexte 2704 spcimdv 3543 bnj1090 34991 bj-spimvwt 36713 bj-spcimdv 36939 bj-spcimdvv 36940 19.36vv 44486 |
| Copyright terms: Public domain | W3C validator |