HomeHome Metamath Proof Explorer
Theorem List (p. 28 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 2701-2800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaxi5r 2701 Converse of axc4 2319 (intuitionistic logic axiom ax-i5r). (Contributed by Jim Kingdon, 31-Dec-2017.)
((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑𝜓))
 
Theoremaxial 2702 The setvar 𝑥 is not free in 𝑥𝜑 (intuitionistic logic axiom ax-ial). (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Theoremaxie1 2703 The setvar 𝑥 is not free in 𝑥𝜑 (intuitionistic logic axiom ax-ie1). (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∃𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Theoremaxie2 2704 A key property of existential quantification (intuitionistic logic axiom ax-ie2). (Contributed by Jim Kingdon, 31-Dec-2017.)
(∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theoremaxi9 2705 Axiom of existence (intuitionistic logic axiom ax-i9). In classical logic, this is equivalent to ax-6 1972 but in intuitionistic logic it needs to be stated using the existential quantifier. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
𝑥 𝑥 = 𝑦
 
Theoremaxi10 2706 Axiom of Quantifier Substitution (intuitionistic logic axiom ax-10). This is just axc11n 2426 by another name. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremaxi12 2707 Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2382 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Jim Kingdon, 31-Dec-2017.) Avoid ax-11 2156. (Revised by Wolf Lammen, 24-Apr-2023.) (New usage is discouraged.)
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
 
Theoremaxbnd 2708 Axiom of Bundling (intuitionistic logic axiom ax-bnd). In classical logic, this and axi12 2707 are fairly straightforward consequences of axc9 2382. But in intuitionistic logic, it is not easy to add the extra 𝑥 to axi12 2707 and so we treat the two as separate axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Jim Kingdon, 22-Mar-2018.) (Proof shortened by Wolf Lammen, 24-Apr-2023.) (New usage is discouraged.)
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
 
PART 2  ZF (ZERMELO-FRAENKEL) SET THEORY

Set theory uses the formalism of propositional and predicate calculus to assert properties of arbitrary mathematical objects called "sets". A set can be an element of another set, and this relationship is indicated by the symbol. Starting with the simplest mathematical object, called the empty set, set theory builds up more and more complex structures whose existence follows from the axioms, eventually resulting in extremely complicated sets that we identify with the real numbers and other familiar mathematical objects.

A simplistic concept of sets, sometimes called "naive set theory", is vulnerable to a paradox called "Russell's Paradox" (ru 3710), a discovery that revolutionized the foundations of mathematics and logic. Russell's Paradox spawned the development of set theories that countered the paradox, including the ZF set theory that is most widely used and is defined here.

Except for Extensionality, the axioms basically say, "given an arbitrary set x (and, in the cases of Replacement and Regularity, provided that an antecedent is satisfied), there exists another set y based on or constructed from it, with the stated properties". (The axiom of extensionality can also be restated this way as shown by axexte 2710.) The individual axiom links provide more detailed descriptions. We derive the redundant ZF axioms of Separation, Null Set, and Pairing from the others as theorems.

 
2.1  ZF Set Theory - start with the Axiom of Extensionality
 
2.1.1  Introduce the Axiom of Extensionality
 
Axiomax-ext 2709* Axiom of extensionality. An axiom of Zermelo-Fraenkel set theory. It states that two sets are identical if they contain the same elements. Axiom Ext of [BellMachover] p. 461. Its converse is a theorem of predicate logic, elequ2g 2124.

Set theory can also be formulated with a single primitive predicate on top of traditional predicate calculus without equality. In that case the Axiom of Extensionality becomes (∀𝑤(𝑤𝑥𝑤𝑦) → (𝑥𝑧𝑦𝑧)), and equality 𝑥 = 𝑦 is defined as 𝑤(𝑤𝑥𝑤𝑦). All of the usual axioms of equality then become theorems of set theory. See, for example, Axiom 1 of [TakeutiZaring] p. 8.

To use the above "equality-free" version of Extensionality with Metamath's predicate calculus axioms, we would rewrite all axioms involving equality with equality expanded according to the above definition. Some of those axioms may be provable from ax-ext and would become redundant, but this hasn't been studied carefully.

General remarks: Our set theory axioms are presented using defined connectives (, , etc.) for convenience. However, it is implicitly understood that the actual axioms use only the primitive connectives , ¬, , =, and . It is straightforward to establish the equivalence between the actual axioms and the ones we display, and we will not do so.

It is important to understand that strictly speaking, all of our set theory axioms are really schemes that represent an infinite number of actual axioms. This is inherent in the design of Metamath ("metavariable math"), which manipulates only metavariables. For example, the metavariable 𝑥 in ax-ext 2709 can represent any actual variable v1, v2, v3,... . Distinct variable restrictions ($d) prevent us from substituting say v1 for both 𝑥 and 𝑧. This is in contrast to typical textbook presentations that present actual axioms (except for Replacement ax-rep 5205, which involves a wff metavariable). In practice, though, the theorems and proofs are essentially the same. The $d restrictions make each of the infinite axioms generated by the ax-ext 2709 scheme exactly logically equivalent to each other and in particular to the actual axiom of the textbook version. (Contributed by NM, 21-May-1993.)

(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
 
Theoremaxexte 2710* The axiom of extensionality (ax-ext 2709) restated so that it postulates the existence of a set 𝑧 given two arbitrary sets 𝑥 and 𝑦. This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003.)
𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
 
Theoremaxextg 2711* A generalization of the axiom of extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Remove dependencies on ax-10 2139, ax-12 2173, ax-13 2372. (Revised by BJ, 12-Jul-2019.) (Revised by Wolf Lammen, 9-Dec-2019.)
(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
 
Theoremaxextb 2712* A bidirectional version of the axiom of extensionality. Although this theorem looks like a definition of equality, it requires the axiom of extensionality for its proof under our axiomatization. See the comments for ax-ext 2709 and df-cleq 2730. (Contributed by NM, 14-Nov-2008.)
(𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
 
Theoremaxextmo 2713* There exists at most one set with prescribed elements. Theorem 1.1 of [BellMachover] p. 462. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.)
𝑥𝜑       ∃*𝑥𝑦(𝑦𝑥𝜑)
 
Theoremnulmo 2714* There exists at most one empty set. With either axnul 5224 or axnulALT 5223 or ax-nul 5225, this proves that there exists a unique empty set. In practice, once the language of classes is available, we use the stronger characterization among classes eq0 4274. (Contributed by NM, 22-Dec-2007.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.) (Proof shortened by Wolf Lammen, 26-Apr-2023.)
∃*𝑥𝑦 ¬ 𝑦𝑥
 
2.1.2  Classes
 
2.1.2.1  Class abstractions
 
Syntaxcab 2715 Introduce the class abstraction (or class builder) notation: {𝑥𝜑} is the class of sets 𝑥 such that 𝜑(𝑥) is true. A setvar variable can be expressed as a class abstraction per Theorem cvjust 2732, justifying the substitution of class variables for setvar variables via the use of cv 1538.
class {𝑥𝜑}
 
Definitiondf-clab 2716 Define class abstractions, that is, classes of the form {𝑦𝜑}, which is read "the class of sets 𝑦 such that 𝜑(𝑦)".

A few remarks are in order:

1. The axiomatic statement df-clab 2716 does not define the class abstraction {𝑦𝜑} itself, that is, it does not have the form {𝑦𝜑} = ... that a standard definition should have (for a good reason: equality itself has not yet been defined or axiomatized for class abstractions; it is defined later in df-cleq 2730). Instead, df-clab 2716 has the form (𝑥 ∈ {𝑦𝜑} ↔ ...), meaning that it only defines what it means for a setvar to be a member of a class abstraction. As a consequence, one can say that df-clab 2716 defines class abstractions if and only if a class abstraction is completely determined by which elements belong to it, which is the content of the axiom of extensionality ax-ext 2709. Therefore, df-clab 2716 can be considered a definition only in systems that can prove ax-ext 2709 (and the necessary first-order logic).

2. As in all definitions, the definiendum (the left-hand side of the biconditional) has no disjoint variable conditions. In particular, the setvar variables 𝑥 and 𝑦 need not be distinct, and the formula 𝜑 may depend on both 𝑥 and 𝑦. This is necessary, as with all definitions, since if there was for instance a disjoint variable condition on 𝑥, 𝑦, then one could not do anything with expressions like 𝑥 ∈ {𝑥𝜑} which are sometimes useful to shorten proofs (because of abid 2719). Most often, however, 𝑥 does not occur in {𝑦𝜑} and 𝑦 is free in 𝜑.

3. Remark 1 stresses that df-clab 2716 does not have the standard form of a definition for a class, but one could be led to think it has the standard form of a definition for a formula. However, it also fails that test since the membership predicate has already appeared earlier (e.g., in the non-syntactic statement ax-8 2110). Indeed, the definiendum extends, or "overloads", the membership predicate from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This is possible because of wcel 2108 and cab 2715, and it can be called an "extension" of the membership predicate because of wel 2109, whose proof uses cv 1538. An a posteriori justification for cv 1538 is given by cvjust 2732, stating that every setvar can be written as a class abstraction (though conversely not every class abstraction is a set, as illustrated by Russell's paradox ru 3710).

4. Proof techniques. Because class variables can be substituted with compound expressions and setvar variables cannot, it is often useful to convert a theorem containing a free setvar variable to a more general version with a class variable. This is done with theorems such as vtoclg 3495 which is used, for example, to convert elirrv 9285 to elirr 9286.

5. Definition or axiom? The question arises with the three axiomatic statements introducing classes, df-clab 2716, df-cleq 2730, and df-clel 2817, to decide if they qualify as definitions or if they should be called axioms. Under the strict definition of "definition" (see conventions 28665), they are not definitions (see Remarks 1 and 3 above, and similarly for df-cleq 2730 and df-clel 2817). One could be less strict and decide to call "definition" every axiomatic statement which provides an eliminable and conservative extension of the considered axiom system. But the notion of conservativity may be given two different meanings in set.mm, due to the difference between the "scheme level" of set.mm and the "object level" of classical treatments. For a proof that these three axiomatic statements yield an eliminable and weakly (that is, object-level) conservative extension of FOL= plus ax-ext 2709, see Appendix of [Levy] p. 357.

6. References and history. The concept of class abstraction dates back to at least Frege, and is used by Whitehead and Russell. This definition is Definition 2.1 of [Quine] p. 16 and Axiom 4.3.1 of [Levy] p. 12. It is called the "axiom of class comprehension" by [Levy] p. 358, who treats the theory of classes as an extralogical extension to predicate logic and set theory axioms. He calls the construction {𝑦𝜑} a "class term". For a full description of how classes are introduced and how to recover the primitive language, see the books of Quine and Levy (and the comment of abeq2 2871 for a quick overview). For a general discussion of the theory of classes, see mmset.html#class 2871. (Contributed by NM, 26-May-1993.) (Revised by BJ, 19-Aug-2023.)

(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
 
Theoremeleq1ab 2717 Extension (in the sense of Remark 3 of the comment of df-clab 2716) of elequ1 2115 from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This extension does not require ax-8 2110 contrary to elequ1 2115, but recall from Remark 3 of the comment of df-clab 2716 that it can be considered an extension only because of cvjust 2732, which does require ax-8 2110.

This is an instance of eleq1w 2821 where the containing class is a class abstraction, and contrary to it, it can be proved without df-clel 2817. See also eleq1 2826 for general classes.

The straightforward yet important fact that this statement can be proved from FOL= plus df-clab 2716 (hence without ax-ext 2709, df-cleq 2730 or df-clel 2817) was stressed by Mario Carneiro. (Contributed by BJ, 17-Aug-2023.)

(𝑥 = 𝑦 → (𝑥 ∈ {𝑧𝜑} ↔ 𝑦 ∈ {𝑧𝜑}))
 
Theoremcleljustab 2718* Extension of cleljust 2117 from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This is an instance of dfclel 2818 where the containing class is a class abstraction. The same remarks as for eleq1ab 2717 apply. (Contributed by BJ, 8-Nov-2021.) (Proof shortened by Steven Nguyen, 19-May-2023.)
(𝑥 ∈ {𝑦𝜑} ↔ ∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}))
 
Theoremabid 2719 Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.)
(𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
 
Theoremvexwt 2720 A standard theorem of predicate calculus (stdpc4 2072) expressed using class abstractions. Closed form of vexw 2721. (Contributed by BJ, 14-Jun-2019.)
(∀𝑥𝜑𝑦 ∈ {𝑥𝜑})
 
Theoremvexw 2721 If 𝜑 is a theorem, then any set belongs to the class {𝑥𝜑}. Therefore, {𝑥𝜑} is "a" universal class.

This is the closest one can get to defining a universal class, or proving vex 3426, without using ax-ext 2709. Note that this theorem has no disjoint variable condition and does not use df-clel 2817 nor df-cleq 2730 either: only propositional logic and ax-gen 1799 and df-clab 2716. This is sbt 2070 expressed using class abstractions.

Without ax-ext 2709, one cannot define "the" universal class, since one could not prove for instance the justification theorem {𝑥 ∣ ⊤} = {𝑦 ∣ ⊤} (see vjust 3423). Indeed, in order to prove any equality of classes, one needs df-cleq 2730, which has ax-ext 2709 as a hypothesis. Therefore, the classes {𝑥 ∣ ⊤}, {𝑦 ∣ (𝜑𝜑)}, {𝑧 ∣ (∀𝑡𝑡 = 𝑡 → ∀𝑡𝑡 = 𝑡)} and countless others are all universal classes whose equality cannot be proved without ax-ext 2709. Once dfcleq 2731 is available, we will define "the" universal class in df-v 3424.

Its degenerate instance is also a simple consequence of abid 2719 (using mpbir 230). (Contributed by BJ, 13-Jun-2019.) Reduce axiom dependencies. (Revised by Steven Nguyen, 25-Apr-2023.)

𝜑       𝑦 ∈ {𝑥𝜑}
 
Theoremvextru 2722 Every setvar is a member of {𝑥 ∣ ⊤}, which is therefore "a" universal class. Once class extensionality dfcleq 2731 is available, we can say "the" universal class (see df-v 3424). This is sbtru 2071 expressed using class abstractions. (Contributed by BJ, 2-Sep-2023.)
𝑦 ∈ {𝑥 ∣ ⊤}
 
Theoremnfsab1 2723* Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2173. (Revised by SN, 20-Sep-2023.)
𝑥 𝑦 ∈ {𝑥𝜑}
 
Theoremhbab1 2724* Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2024.)
(𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
 
Theoremhbab1OLD 2725* Obsolete version of hbab1 2724 as of 25-Oct-2024. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
 
Theoremhbab 2726* Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.) Add disjoint variable condition to avoid ax-13 2372. See hbabg 2727 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
(𝜑 → ∀𝑥𝜑)       (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
 
Theoremhbabg 2727* Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2372. See hbab 2726 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by NM, 1-Mar-1995.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)       (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
 
Theoremnfsab 2728* Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfsabg 2729 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
𝑥𝜑       𝑥 𝑧 ∈ {𝑦𝜑}
 
Theoremnfsabg 2729* Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfsab 2728 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
𝑥𝜑       𝑥 𝑧 ∈ {𝑦𝜑}
 
2.1.2.2  Class equality

This section introduces class equality in df-cleq 2730.

Note that apart from the local introduction of class variables to state the syntax axioms wceq 1539 and wcel 2108, this section is the first to use class variables. Therefore, the file set.mm contains declarations of class variables at the beginning of this section (not visible on the webpages).

 
Definitiondf-cleq 2730* Define the equality connective between classes. Definition 2.7 of [Quine] p. 18. Also Definition 4.5 of [TakeutiZaring] p. 13; Chapter 4 provides its justification and methods for eliminating it. Note that its elimination will not necessarily result in a single wff in the original language but possibly a "scheme" of wffs.

The hypotheses express that all instances of the conclusion where class variables are replaced with setvar variables hold. Therefore, this definition merely extends to class variables something that is true for setvar variables, hence is conservative. This is only a proof sketch of conservativity; for details see Appendix of [Levy] p. 357. This is the reason why we call this axiomatic statement a "definition", even though it does not have the usual form of a definition. If we required a definition to have the usual form, we would call df-cleq 2730 an axiom.

See also comments under df-clab 2716, df-clel 2817, and abeq2 2871.

In the form of dfcleq 2731, this is called the "axiom of extensionality" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms.

While the three class definitions df-clab 2716, df-cleq 2730, and df-clel 2817 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker.

For a general discussion of the theory of classes, see mmset.html#class 2817. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.)

(𝑦 = 𝑧 ↔ ∀𝑢(𝑢𝑦𝑢𝑧))    &   (𝑡 = 𝑡 ↔ ∀𝑣(𝑣𝑡𝑣𝑡))       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremdfcleq 2731* The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2709) and the definition of class equality (df-cleq 2730). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2712 to prove also the hypothesis of df-cleq 2730 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1799, equid 2016 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.)
(𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremcvjust 2732* Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1538, which allows us to substitute a setvar variable for a class variable. See also cab 2715 and df-clab 2716. Note that this is not a rigorous justification, because cv 1538 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." See abid1 2880 for the version of cvjust 2732 extended to classes. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2372. (Revised by Wolf Lammen, 4-May-2023.)
𝑥 = {𝑦𝑦𝑥}
 
Theoremax9ALT 2733 Proof of ax-9 2118 from Tarski's FOL and dfcleq 2731. For a version not using ax-8 2110 either, see eleq2w2 2734. This shows that dfcleq 2731 is too powerful to be used as a definition instead of df-cleq 2730. Note that ax-ext 2709 is also a direct consequence of dfcleq 2731 (as an instance of its forward implication). (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
 
Theoremeleq2w2 2734* A weaker version of eleq2 2827 (but stronger than ax-9 2118 and elequ2 2123) that uses ax-12 2173 to avoid ax-8 2110 and df-clel 2817. Compare eleq2w 2822, whose setvars appear where the class variables are in this theorem, and vice versa. (Contributed by BJ, 24-Jun-2019.) Strengthen from setvar variables to class variables. (Revised by WL and SN, 23-Aug-2024.)
(𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
 
Theoremeqriv 2735* Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.)
(𝑥𝐴𝑥𝐵)       𝐴 = 𝐵
 
Theoremeqrdv 2736* Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.)
(𝜑 → (𝑥𝐴𝑥𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremeqrdav 2737* Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
((𝜑𝑥𝐴) → 𝑥𝐶)    &   ((𝜑𝑥𝐵) → 𝑥𝐶)    &   ((𝜑𝑥𝐶) → (𝑥𝐴𝑥𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremeqid 2738 Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine] p. 41.

This is part of Frege's eighth axiom per Proposition 54 of [Frege1879] p. 50; see also biid 260. An early mention of this law can be found in Aristotle, Metaphysics, Z.17, 1041a10-20. (Thanks to Stefan Allan and BJ for this information.) (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 14-Oct-2017.)

𝐴 = 𝐴
 
Theoremeqidd 2739 Class identity law with antecedent. (Contributed by NM, 21-Aug-2008.)
(𝜑𝐴 = 𝐴)
 
Theoremeqeq1d 2740 Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐶))
 
Theoremeqeq1dALT 2741 Alternate proof of eqeq1d 2740, shorter but requiring ax-12 2173. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 19-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐶))
 
Theoremeqeq1 2742 Equality implies equivalence of equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
(𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
 
Theoremeqeq1i 2743 Inference from equality to equivalence of equalities. (Contributed by NM, 15-Jul-1993.)
𝐴 = 𝐵       (𝐴 = 𝐶𝐵 = 𝐶)
 
Theoremeqcomd 2744 Deduction from commutative law for class equality. (Contributed by NM, 15-Aug-1994.) Allow shortening of eqcom 2745. (Revised by Wolf Lammen, 19-Nov-2019.)
(𝜑𝐴 = 𝐵)       (𝜑𝐵 = 𝐴)
 
Theoremeqcom 2745 Commutative law for class equality. Theorem 6.5 of [Quine] p. 41. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
(𝐴 = 𝐵𝐵 = 𝐴)
 
Theoremeqcoms 2746 Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 24-Jun-1993.)
(𝐴 = 𝐵𝜑)       (𝐵 = 𝐴𝜑)
 
Theoremeqcomi 2747 Inference from commutative law for class equality. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵       𝐵 = 𝐴
 
Theoremneqcomd 2748 Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑 → ¬ 𝐴 = 𝐵)       (𝜑 → ¬ 𝐵 = 𝐴)
 
Theoremeqeq2d 2749 Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) Allow shortening of eqeq2 2750. (Revised by Wolf Lammen, 19-Nov-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶 = 𝐴𝐶 = 𝐵))
 
Theoremeqeq2 2750 Equality implies equivalence of equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
(𝐴 = 𝐵 → (𝐶 = 𝐴𝐶 = 𝐵))
 
Theoremeqeq2i 2751 Inference from equality to equivalence of equalities. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵       (𝐶 = 𝐴𝐶 = 𝐵)
 
Theoremeqeqan12d 2752 A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2760. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeqan12rd 2753 A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeq12d 2754 A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Oct-2024.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeq12 2755 Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeq12i 2756 A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴 = 𝐶𝐵 = 𝐷)
 
Theoremeqeq12OLD 2757 Obsolete version of eqeq12 2755 as of 23-Oct-2024. (Contributed by NM, 3-Aug-1994.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeq12dOLD 2758 Obsolete version of eqeq12d 2754 as of 23-Oct-2024. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeqan12dOLD 2759 Obsolete version of eqeqan12d 2752 as of 23-Oct-2024. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeqan12dALT 2760 Alternate proof of eqeqan12d 2752. This proof has one more step but one fewer essential step. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqtr 2761 Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.)
((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)
 
Theoremeqtr2 2762 A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.)
((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)
 
Theoremeqtr2OLD 2763 Obsolete version of eqtr2 as of 24-Oct-2024. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)
 
Theoremeqtr3 2764 A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.)
((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
 
Theoremeqtr3OLD 2765 Obsolete version of eqtr3 2764 as of 24-Oct-2024. (Contributed by NM, 20-May-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
 
Theoremeqtri 2766 An equality transitivity inference. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵    &   𝐵 = 𝐶       𝐴 = 𝐶
 
Theoremeqtr2i 2767 An equality transitivity inference. (Contributed by NM, 21-Feb-1995.)
𝐴 = 𝐵    &   𝐵 = 𝐶       𝐶 = 𝐴
 
Theoremeqtr3i 2768 An equality transitivity inference. (Contributed by NM, 6-May-1994.)
𝐴 = 𝐵    &   𝐴 = 𝐶       𝐵 = 𝐶
 
Theoremeqtr4i 2769 An equality transitivity inference. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵    &   𝐶 = 𝐵       𝐴 = 𝐶
 
Theorem3eqtri 2770 An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.)
𝐴 = 𝐵    &   𝐵 = 𝐶    &   𝐶 = 𝐷       𝐴 = 𝐷
 
Theorem3eqtrri 2771 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐵 = 𝐶    &   𝐶 = 𝐷       𝐷 = 𝐴
 
Theorem3eqtr2i 2772 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐴 = 𝐷
 
Theorem3eqtr2ri 2773 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐷 = 𝐴
 
Theorem3eqtr3i 2774 An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶 = 𝐷
 
Theorem3eqtr3ri 2775 An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐷 = 𝐶
 
Theorem3eqtr4i 2776 An inference from three chained equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶 = 𝐷
 
Theorem3eqtr4ri 2777 An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐷 = 𝐶
 
Theoremeqtrd 2778 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2d 2779 An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)
 
Theoremeqtr3d 2780 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)       (𝜑𝐵 = 𝐶)
 
Theoremeqtr4d 2781 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴 = 𝐶)
 
Theorem3eqtrd 2782 A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)
 
Theorem3eqtrrd 2783 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)
 
Theorem3eqtr2d 2784 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)
 
Theorem3eqtr2rd 2785 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)
 
Theorem3eqtr3d 2786 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr3rd 2787 A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐷 = 𝐶)
 
Theorem3eqtr4d 2788 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4rd 2789 A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐷 = 𝐶)
 
Theoremeqtrid 2790 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremsyl5eq 2791 Renamed to eqtrid 2790. Kept during a transition period. DO NOT USE. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2id 2792 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)
 
Theoremeqtr3id 2793 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
𝐵 = 𝐴    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr3di 2794 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)    &   𝐴 = 𝐶       (𝜑𝐵 = 𝐶)
 
Theoremeqtrdi 2795 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
(𝜑𝐴 = 𝐵)    &   𝐵 = 𝐶       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2di 2796 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)    &   𝐵 = 𝐶       (𝜑𝐶 = 𝐴)
 
Theoremeqtr4di 2797 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
(𝜑𝐴 = 𝐵)    &   𝐶 = 𝐵       (𝜑𝐴 = 𝐶)
 
Theoremeqtr4id 2798 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐴 = 𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴 = 𝐶)
 
Theoremsylan9eq 2799 An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐵 = 𝐶)       ((𝜑𝜓) → 𝐴 = 𝐶)
 
Theoremsylan9req 2800 An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.)
(𝜑𝐵 = 𝐴)    &   (𝜓𝐵 = 𝐶)       ((𝜑𝜓) → 𝐴 = 𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >