Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axfrege54c Structured version   Visualization version   GIF version

Theorem axfrege54c 41388
Description: Reflexive equality of classes. Identical to eqid 2738. Justification for ax-frege54c 41389. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
axfrege54c 𝐴 = 𝐴

Proof of Theorem axfrege54c
StepHypRef Expression
1 eqid 2738 1 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator