![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege53b | Structured version Visualization version GIF version |
Description: Lemma for frege102 (via frege92 39090). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege53b | ⊢ ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege52b 39024 | . 2 ⊢ (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜑)) | |
2 | ax-frege8 38944 | . 2 ⊢ ((𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜑)) → ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-ext 2804 ax-frege8 38944 ax-frege52c 39023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 df-clab 2813 df-cleq 2819 df-clel 2822 df-sbc 3664 |
This theorem is referenced by: frege55lem2b 39031 |
Copyright terms: Public domain | W3C validator |