![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege53b | Structured version Visualization version GIF version |
Description: Lemma for frege102 (via frege92 43264). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege53b | ⊢ ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege52b 43198 | . 2 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) | |
2 | ax-frege8 43118 | . 2 ⊢ ((𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-frege8 43118 ax-frege52c 43197 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-clab 2704 df-cleq 2718 df-clel 2804 df-sbc 3773 |
This theorem is referenced by: frege55lem2b 43205 |
Copyright terms: Public domain | W3C validator |