Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biadani | Structured version Visualization version GIF version |
Description: Inference associated with biadan 816. (Contributed by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biadani | ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadani.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | biadan 816 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: biadanii 819 elelb 35082 |
Copyright terms: Public domain | W3C validator |