MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biadani Structured version   Visualization version   GIF version

Theorem biadani 817
Description: Inference associated with biadan 816. (Contributed by BJ, 4-Mar-2023.)
Hypothesis
Ref Expression
biadani.1 (𝜑𝜓)
Assertion
Ref Expression
biadani ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))

Proof of Theorem biadani
StepHypRef Expression
1 biadani.1 . 2 (𝜑𝜓)
2 biadan 816 . 2 ((𝜑𝜓) ↔ ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒))))
31, 2mpbi 229 1 ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  biadanii  819  elelb  35082
  Copyright terms: Public domain W3C validator