MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biadaniALT Structured version   Visualization version   GIF version

Theorem biadaniALT 817
Description: Alternate proof of biadani 816 not using biadan 815. (Contributed by BJ, 4-Mar-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
biadani.1 (𝜑𝜓)
Assertion
Ref Expression
biadaniALT ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))

Proof of Theorem biadaniALT
StepHypRef Expression
1 pm5.32 573 . 2 ((𝜓 → (𝜑𝜒)) ↔ ((𝜓𝜑) ↔ (𝜓𝜒)))
2 biadani.1 . . . 4 (𝜑𝜓)
32pm4.71ri 560 . . 3 (𝜑 ↔ (𝜓𝜑))
43bibi1i 338 . 2 ((𝜑 ↔ (𝜓𝜒)) ↔ ((𝜓𝜑) ↔ (𝜓𝜒)))
51, 4bitr4i 277 1 ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator