|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > biadaniALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of biadani 819 not using biadan 818. (Contributed by BJ, 4-Mar-2023.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| biadaniALT | ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) | |
| 2 | biadani.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | pm4.71ri 560 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) | 
| 4 | 3 | bibi1i 338 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) | 
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |