| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version | ||
| Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) |
| biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: elab4g 3639 elpwb 4559 ssdifsn 4739 brab2a 5712 elon2 6318 elovmpo 7594 eqop2 7967 iscard 9871 iscard2 9872 elnnnn0 12427 elfzo2 13565 bitsval 16335 1nprm 16590 funcpropd 17809 isfull 17819 isfth 17823 ismgmhm 18570 ismhm 18659 isghm 19094 isghmOLD 19095 ghmpropd 19135 isga 19170 oppgcntz 19243 gexdvdsi 19462 isrnghm 20326 isrhm 20363 issdrg 20673 abvpropd 20720 islmhm 20931 dfprm2 21380 prmirred 21381 elocv 21575 isobs 21627 iscn2 23123 iscnp2 23124 islocfin 23402 elflim2 23849 isfcls 23894 isnghm 24609 isnmhm 24632 0plef 25571 elply 26098 dchrelbas4 27152 brsslt 27696 nb3grpr 29327 ispligb 30421 isph 30766 abfmpunirn 32596 iscvm 35242 sscoid 35897 bj-pwvrelb 36882 bj-elsnb 37045 bj-ideqb 37143 bj-opelidb1ALT 37150 bj-elid5 37153 eldiophb 42740 eldioph3b 42748 eldioph4b 42794 bropabg 43306 brfvrcld2 43675 islmd 49660 iscmd 49661 |
| Copyright terms: Public domain | W3C validator |