Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 818. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 818 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: elab4g 3627 elpwb 4559 ssdifsn 4739 brab2a 5715 elon2 6317 elovmpo 7580 eqop2 7946 iscard 9836 iscard2 9837 elnnnn0 12381 elfzo2 13495 bitsval 16230 1nprm 16481 funcpropd 17713 isfull 17723 isfth 17727 ismhm 18529 isghm 18930 ghmpropd 18968 isga 18993 oppgcntz 19067 gexdvdsi 19284 isrhm 20059 issdrg 20167 abvpropd 20207 islmhm 20394 dfprm2 20800 prmirred 20801 elocv 20978 isobs 21032 iscn2 22494 iscnp2 22495 islocfin 22773 elflim2 23220 isfcls 23265 isnghm 23992 isnmhm 24015 0plef 24941 elply 25461 dchrelbas4 26496 brsslt 27030 nb3grpr 28037 ispligb 29126 isph 29471 abfmpunirn 31274 iscvm 33518 sscoid 34352 bj-pwvrelb 35219 bj-elsnb 35386 bj-ideqb 35484 bj-opelidb1ALT 35491 bj-elid5 35494 eldiophb 40892 eldioph3b 40900 eldioph4b 40946 bropabg 41392 brfvrcld2 41673 ismgmhm 45755 isrnghm 45868 |
Copyright terms: Public domain | W3C validator |