Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 817. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 817 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: elab4g 3614 elpwb 4543 ssdifsn 4721 brab2a 5680 elon2 6277 elovmpo 7514 eqop2 7874 iscard 9733 iscard2 9734 elnnnn0 12276 elfzo2 13390 bitsval 16131 1nprm 16384 funcpropd 17616 isfull 17626 isfth 17630 ismhm 18432 isghm 18834 ghmpropd 18872 isga 18897 oppgcntz 18971 gexdvdsi 19188 isrhm 19965 issdrg 20063 abvpropd 20102 islmhm 20289 dfprm2 20695 prmirred 20696 elocv 20873 isobs 20927 iscn2 22389 iscnp2 22390 islocfin 22668 elflim2 23115 isfcls 23160 isnghm 23887 isnmhm 23910 0plef 24836 elply 25356 dchrelbas4 26391 nb3grpr 27749 ispligb 28839 isph 29184 abfmpunirn 30989 iscvm 33221 brsslt 33980 sscoid 34215 bj-pwvrelb 35083 bj-elsnb 35232 bj-ideqb 35330 bj-opelidb1ALT 35337 bj-elid5 35340 eldiophb 40579 eldioph3b 40587 eldioph4b 40633 brfvrcld2 41300 ismgmhm 45337 isrnghm 45450 |
Copyright terms: Public domain | W3C validator |