![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: elab4g 3699 elpwb 4630 ssdifsn 4813 brab2a 5793 elon2 6406 elovmpo 7695 eqop2 8073 iscard 10044 iscard2 10045 elnnnn0 12596 elfzo2 13719 bitsval 16470 1nprm 16726 funcpropd 17967 isfull 17977 isfth 17981 ismgmhm 18734 ismhm 18820 isghm 19255 isghmOLD 19256 ghmpropd 19296 isga 19331 oppgcntz 19407 gexdvdsi 19625 isrnghm 20467 isrhm 20504 issdrg 20811 abvpropd 20858 islmhm 21049 dfprm2 21507 prmirred 21508 elocv 21709 isobs 21763 iscn2 23267 iscnp2 23268 islocfin 23546 elflim2 23993 isfcls 24038 isnghm 24765 isnmhm 24788 0plef 25726 elply 26254 dchrelbas4 27305 brsslt 27848 nb3grpr 29417 ispligb 30509 isph 30854 abfmpunirn 32670 iscvm 35227 sscoid 35877 bj-pwvrelb 36864 bj-elsnb 37027 bj-ideqb 37125 bj-opelidb1ALT 37132 bj-elid5 37135 eldiophb 42713 eldioph3b 42721 eldioph4b 42767 bropabg 43285 brfvrcld2 43654 |
Copyright terms: Public domain | W3C validator |