| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version | ||
| Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) |
| biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: elab4g 3662 elpwb 4583 ssdifsn 4764 brab2a 5748 elon2 6363 elovmpo 7650 eqop2 8029 iscard 9987 iscard2 9988 elnnnn0 12542 elfzo2 13677 bitsval 16441 1nprm 16696 funcpropd 17913 isfull 17923 isfth 17927 ismgmhm 18672 ismhm 18761 isghm 19196 isghmOLD 19197 ghmpropd 19237 isga 19272 oppgcntz 19345 gexdvdsi 19562 isrnghm 20399 isrhm 20436 issdrg 20746 abvpropd 20793 islmhm 20983 dfprm2 21432 prmirred 21433 elocv 21626 isobs 21678 iscn2 23174 iscnp2 23175 islocfin 23453 elflim2 23900 isfcls 23945 isnghm 24660 isnmhm 24683 0plef 25623 elply 26150 dchrelbas4 27204 brsslt 27747 nb3grpr 29307 ispligb 30404 isph 30749 abfmpunirn 32576 iscvm 35227 sscoid 35877 bj-pwvrelb 36862 bj-elsnb 37025 bj-ideqb 37123 bj-opelidb1ALT 37130 bj-elid5 37133 eldiophb 42727 eldioph3b 42735 eldioph4b 42781 bropabg 43294 brfvrcld2 43663 islmd 49483 iscmd 49484 |
| Copyright terms: Public domain | W3C validator |