| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version | ||
| Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) |
| biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: elab4g 3650 elpwb 4571 ssdifsn 4752 brab2a 5732 elon2 6343 elovmpo 7634 eqop2 8011 iscard 9928 iscard2 9929 elnnnn0 12485 elfzo2 13623 bitsval 16394 1nprm 16649 funcpropd 17864 isfull 17874 isfth 17878 ismgmhm 18623 ismhm 18712 isghm 19147 isghmOLD 19148 ghmpropd 19188 isga 19223 oppgcntz 19296 gexdvdsi 19513 isrnghm 20350 isrhm 20387 issdrg 20697 abvpropd 20744 islmhm 20934 dfprm2 21383 prmirred 21384 elocv 21577 isobs 21629 iscn2 23125 iscnp2 23126 islocfin 23404 elflim2 23851 isfcls 23896 isnghm 24611 isnmhm 24634 0plef 25573 elply 26100 dchrelbas4 27154 brsslt 27697 nb3grpr 29309 ispligb 30406 isph 30751 abfmpunirn 32576 iscvm 35246 sscoid 35901 bj-pwvrelb 36886 bj-elsnb 37049 bj-ideqb 37147 bj-opelidb1ALT 37154 bj-elid5 37157 eldiophb 42745 eldioph3b 42753 eldioph4b 42799 bropabg 43312 brfvrcld2 43681 islmd 49654 iscmd 49655 |
| Copyright terms: Public domain | W3C validator |