![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 816. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 816 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: elab4g 3672 elpwb 4609 ssdifsn 4790 brab2a 5768 elon2 6374 elovmpo 7653 eqop2 8020 iscard 9972 iscard2 9973 elnnnn0 12519 elfzo2 13639 bitsval 16369 1nprm 16620 funcpropd 17855 isfull 17865 isfth 17869 ismgmhm 18621 ismhm 18707 isghm 19130 ghmpropd 19170 isga 19196 oppgcntz 19272 gexdvdsi 19492 isrnghm 20332 isrhm 20369 issdrg 20547 abvpropd 20593 islmhm 20782 dfprm2 21244 prmirred 21245 elocv 21440 isobs 21494 iscn2 22962 iscnp2 22963 islocfin 23241 elflim2 23688 isfcls 23733 isnghm 24460 isnmhm 24483 0plef 25421 elply 25944 dchrelbas4 26982 brsslt 27523 nb3grpr 28906 ispligb 29997 isph 30342 abfmpunirn 32144 iscvm 34548 sscoid 35189 bj-pwvrelb 36081 bj-elsnb 36245 bj-ideqb 36343 bj-opelidb1ALT 36350 bj-elid5 36353 eldiophb 41797 eldioph3b 41805 eldioph4b 41851 bropabg 42375 brfvrcld2 42745 |
Copyright terms: Public domain | W3C validator |