![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: elab4g 3674 elpwb 4611 ssdifsn 4792 brab2a 5770 elon2 6376 elovmpo 7651 eqop2 8018 iscard 9970 iscard2 9971 elnnnn0 12515 elfzo2 13635 bitsval 16365 1nprm 16616 funcpropd 17851 isfull 17861 isfth 17865 ismhm 18673 isghm 19092 ghmpropd 19130 isga 19155 oppgcntz 19231 gexdvdsi 19451 isrhm 20257 issdrg 20404 abvpropd 20450 islmhm 20638 dfprm2 21043 prmirred 21044 elocv 21221 isobs 21275 iscn2 22742 iscnp2 22743 islocfin 23021 elflim2 23468 isfcls 23513 isnghm 24240 isnmhm 24263 0plef 25189 elply 25709 dchrelbas4 26746 brsslt 27287 nb3grpr 28639 ispligb 29730 isph 30075 abfmpunirn 31877 iscvm 34250 sscoid 34885 bj-pwvrelb 35778 bj-elsnb 35942 bj-ideqb 36040 bj-opelidb1ALT 36047 bj-elid5 36050 eldiophb 41495 eldioph3b 41503 eldioph4b 41549 bropabg 42073 brfvrcld2 42443 ismgmhm 46553 isrnghm 46690 |
Copyright terms: Public domain | W3C validator |