| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version | ||
| Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) |
| biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: elab4g 3653 elpwb 4574 ssdifsn 4755 brab2a 5735 elon2 6346 elovmpo 7637 eqop2 8014 iscard 9935 iscard2 9936 elnnnn0 12492 elfzo2 13630 bitsval 16401 1nprm 16656 funcpropd 17871 isfull 17881 isfth 17885 ismgmhm 18630 ismhm 18719 isghm 19154 isghmOLD 19155 ghmpropd 19195 isga 19230 oppgcntz 19303 gexdvdsi 19520 isrnghm 20357 isrhm 20394 issdrg 20704 abvpropd 20751 islmhm 20941 dfprm2 21390 prmirred 21391 elocv 21584 isobs 21636 iscn2 23132 iscnp2 23133 islocfin 23411 elflim2 23858 isfcls 23903 isnghm 24618 isnmhm 24641 0plef 25580 elply 26107 dchrelbas4 27161 brsslt 27704 nb3grpr 29316 ispligb 30413 isph 30758 abfmpunirn 32583 iscvm 35253 sscoid 35908 bj-pwvrelb 36893 bj-elsnb 37056 bj-ideqb 37154 bj-opelidb1ALT 37161 bj-elid5 37164 eldiophb 42752 eldioph3b 42760 eldioph4b 42806 bropabg 43319 brfvrcld2 43688 islmd 49658 iscmd 49659 |
| Copyright terms: Public domain | W3C validator |