| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version | ||
| Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) |
| biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: elab4g 3634 elpwb 4555 ssdifsn 4737 brab2a 5707 elon2 6317 elovmpo 7591 eqop2 7964 iscard 9868 iscard2 9869 elnnnn0 12424 elfzo2 13562 bitsval 16335 1nprm 16590 funcpropd 17809 isfull 17819 isfth 17823 ismgmhm 18604 ismhm 18693 isghm 19127 isghmOLD 19128 ghmpropd 19168 isga 19203 oppgcntz 19276 gexdvdsi 19495 isrnghm 20359 isrhm 20396 issdrg 20703 abvpropd 20750 islmhm 20961 dfprm2 21410 prmirred 21411 elocv 21605 isobs 21657 iscn2 23153 iscnp2 23154 islocfin 23432 elflim2 23879 isfcls 23924 isnghm 24638 isnmhm 24661 0plef 25600 elply 26127 dchrelbas4 27181 brsslt 27725 nb3grpr 29360 ispligb 30457 isph 30802 abfmpunirn 32634 iscvm 35303 sscoid 35955 bj-pwvrelb 36942 bj-elsnb 37105 bj-ideqb 37203 bj-opelidb1ALT 37210 bj-elid5 37213 eldiophb 42860 eldioph3b 42868 eldioph4b 42914 bropabg 43426 brfvrcld2 43795 islmd 49776 iscmd 49777 |
| Copyright terms: Public domain | W3C validator |