![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 820. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 820 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: elab4g 3685 elpwb 4612 ssdifsn 4792 brab2a 5781 elon2 6396 elovmpo 7677 eqop2 8055 iscard 10012 iscard2 10013 elnnnn0 12566 elfzo2 13698 bitsval 16457 1nprm 16712 funcpropd 17953 isfull 17963 isfth 17967 ismgmhm 18721 ismhm 18810 isghm 19245 isghmOLD 19246 ghmpropd 19286 isga 19321 oppgcntz 19397 gexdvdsi 19615 isrnghm 20457 isrhm 20494 issdrg 20805 abvpropd 20852 islmhm 21043 dfprm2 21501 prmirred 21502 elocv 21703 isobs 21757 iscn2 23261 iscnp2 23262 islocfin 23540 elflim2 23987 isfcls 24032 isnghm 24759 isnmhm 24782 0plef 25720 elply 26248 dchrelbas4 27301 brsslt 27844 nb3grpr 29413 ispligb 30505 isph 30850 abfmpunirn 32668 iscvm 35243 sscoid 35894 bj-pwvrelb 36880 bj-elsnb 37043 bj-ideqb 37141 bj-opelidb1ALT 37148 bj-elid5 37151 eldiophb 42744 eldioph3b 42752 eldioph4b 42798 bropabg 43312 brfvrcld2 43681 |
Copyright terms: Public domain | W3C validator |