![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 818. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 818 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: elab4g 3672 elpwb 4609 ssdifsn 4790 brab2a 5767 elon2 6372 elovmpo 7647 eqop2 8014 iscard 9966 iscard2 9967 elnnnn0 12511 elfzo2 13631 bitsval 16361 1nprm 16612 funcpropd 17847 isfull 17857 isfth 17861 ismhm 18669 isghm 19086 ghmpropd 19124 isga 19149 oppgcntz 19225 gexdvdsi 19445 isrhm 20249 issdrg 20396 abvpropd 20442 islmhm 20630 dfprm2 21034 prmirred 21035 elocv 21212 isobs 21266 iscn2 22733 iscnp2 22734 islocfin 23012 elflim2 23459 isfcls 23504 isnghm 24231 isnmhm 24254 0plef 25180 elply 25700 dchrelbas4 26735 brsslt 27276 nb3grpr 28628 ispligb 29717 isph 30062 abfmpunirn 31864 iscvm 34238 sscoid 34873 bj-pwvrelb 35766 bj-elsnb 35930 bj-ideqb 36028 bj-opelidb1ALT 36035 bj-elid5 36038 eldiophb 41480 eldioph3b 41488 eldioph4b 41534 bropabg 42058 brfvrcld2 42428 ismgmhm 46539 isrnghm 46675 |
Copyright terms: Public domain | W3C validator |