![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 855. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 855 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 222 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: elab4g 3576 elpwb 4391 ssdifsn 4539 brab2a 5433 elon2 5978 elovmpt2 7144 eqop2 7476 iscard 9121 iscard2 9122 elnnnn0 11670 elfzo2 12775 bitsval 15526 1nprm 15771 funcpropd 16919 isfull 16929 isfth 16933 ismhm 17697 isghm 18018 ghmpropd 18056 isga 18081 oppgcntz 18151 gexdvdsi 18356 isrhm 19084 abvpropd 19205 islmhm 19393 dfprm2 20209 prmirred 20210 elocv 20382 isobs 20434 iscn2 21420 iscnp2 21421 islocfin 21698 elflim2 22145 isfcls 22190 isnghm 22904 isnmhm 22927 0plef 23845 elply 24357 dchrelbas4 25388 nb3grpr 26687 ispligb 27883 isph 28228 abfmpunirn 29997 iscvm 31783 brsslt 32434 sscoid 32554 bj-ismoorec 33578 eldiophb 38159 eldioph3b 38167 eldioph4b 38214 issdrg 38605 brfvrcld2 38820 ismgmhm 42644 isrnghm 42753 |
Copyright terms: Public domain | W3C validator |