Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version |
Description: Inference associated with biadani 816. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
Ref | Expression |
---|---|
biadani.1 | ⊢ (𝜑 → 𝜓) |
biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | biadani 816 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: elab4g 3607 elpwb 4540 ssdifsn 4718 brab2a 5670 elon2 6262 elovmpo 7492 eqop2 7847 iscard 9664 iscard2 9665 elnnnn0 12206 elfzo2 13319 bitsval 16059 1nprm 16312 funcpropd 17532 isfull 17542 isfth 17546 ismhm 18347 isghm 18749 ghmpropd 18787 isga 18812 oppgcntz 18886 gexdvdsi 19103 isrhm 19880 issdrg 19978 abvpropd 20017 islmhm 20204 dfprm2 20607 prmirred 20608 elocv 20785 isobs 20837 iscn2 22297 iscnp2 22298 islocfin 22576 elflim2 23023 isfcls 23068 isnghm 23793 isnmhm 23816 0plef 24741 elply 25261 dchrelbas4 26296 nb3grpr 27652 ispligb 28740 isph 29085 abfmpunirn 30891 iscvm 33121 brsslt 33907 sscoid 34142 bj-pwvrelb 35010 bj-elsnb 35159 bj-ideqb 35257 bj-opelidb1ALT 35264 bj-elid5 35267 eldiophb 40495 eldioph3b 40503 eldioph4b 40549 brfvrcld2 41189 ismgmhm 45225 isrnghm 45338 |
Copyright terms: Public domain | W3C validator |