| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biadanii | Structured version Visualization version GIF version | ||
| Description: Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| biadani.1 | ⊢ (𝜑 → 𝜓) |
| biadanii.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biadanii | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanii.2 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | biadani.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | biadani 819 | . 2 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: elab4g 3647 elpwb 4567 ssdifsn 4748 brab2a 5724 elon2 6331 elovmpo 7614 eqop2 7990 iscard 9904 iscard2 9905 elnnnn0 12461 elfzo2 13599 bitsval 16370 1nprm 16625 funcpropd 17844 isfull 17854 isfth 17858 ismgmhm 18605 ismhm 18694 isghm 19129 isghmOLD 19130 ghmpropd 19170 isga 19205 oppgcntz 19278 gexdvdsi 19497 isrnghm 20361 isrhm 20398 issdrg 20708 abvpropd 20755 islmhm 20966 dfprm2 21415 prmirred 21416 elocv 21610 isobs 21662 iscn2 23158 iscnp2 23159 islocfin 23437 elflim2 23884 isfcls 23929 isnghm 24644 isnmhm 24667 0plef 25606 elply 26133 dchrelbas4 27187 brsslt 27731 nb3grpr 29362 ispligb 30456 isph 30801 abfmpunirn 32626 iscvm 35239 sscoid 35894 bj-pwvrelb 36879 bj-elsnb 37042 bj-ideqb 37140 bj-opelidb1ALT 37147 bj-elid5 37150 eldiophb 42738 eldioph3b 42746 eldioph4b 42792 bropabg 43305 brfvrcld2 43674 islmd 49647 iscmd 49648 |
| Copyright terms: Public domain | W3C validator |