Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biadan | Structured version Visualization version GIF version |
Description: An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii 819 and elelb 35082. (Contributed by BJ, 4-Mar-2023.) (Proof shortened by Wolf Lammen, 8-Mar-2023.) |
Ref | Expression |
---|---|
biadan | ⊢ ((𝜑 → 𝜓) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71r 559 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
2 | bicom 221 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜑)) ↔ ((𝜓 ∧ 𝜑) ↔ 𝜑)) | |
3 | bicom 221 | . . . 4 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜒) ↔ 𝜑)) | |
4 | pm5.32 574 | . . . 4 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) | |
5 | 3, 4 | bibi12i 340 | . . 3 ⊢ (((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ (𝜓 → (𝜑 ↔ 𝜒))) ↔ (((𝜓 ∧ 𝜒) ↔ 𝜑) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)))) |
6 | bicom 221 | . . 3 ⊢ (((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) ↔ ((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ (𝜓 → (𝜑 ↔ 𝜒)))) | |
7 | biluk 387 | . . 3 ⊢ (((𝜓 ∧ 𝜑) ↔ 𝜑) ↔ (((𝜓 ∧ 𝜒) ↔ 𝜑) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)))) | |
8 | 5, 6, 7 | 3bitr4ri 304 | . 2 ⊢ (((𝜓 ∧ 𝜑) ↔ 𝜑) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) |
9 | 1, 2, 8 | 3bitri 297 | 1 ⊢ ((𝜑 → 𝜓) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: biadani 817 |
Copyright terms: Public domain | W3C validator |