|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > biadan | Structured version Visualization version GIF version | ||
| Description: An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii 821 and elelb 36899. (Contributed by BJ, 4-Mar-2023.) (Proof shortened by Wolf Lammen, 8-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| biadan | ⊢ ((𝜑 → 𝜓) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.71r 558 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | bicom 222 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜑)) ↔ ((𝜓 ∧ 𝜑) ↔ 𝜑)) | |
| 3 | bicom 222 | . . . 4 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜒) ↔ 𝜑)) | |
| 4 | pm5.32 573 | . . . 4 ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒))) | |
| 5 | 3, 4 | bibi12i 339 | . . 3 ⊢ (((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ (𝜓 → (𝜑 ↔ 𝜒))) ↔ (((𝜓 ∧ 𝜒) ↔ 𝜑) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)))) | 
| 6 | bicom 222 | . . 3 ⊢ (((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) ↔ ((𝜑 ↔ (𝜓 ∧ 𝜒)) ↔ (𝜓 → (𝜑 ↔ 𝜒)))) | |
| 7 | biluk 385 | . . 3 ⊢ (((𝜓 ∧ 𝜑) ↔ 𝜑) ↔ (((𝜓 ∧ 𝜒) ↔ 𝜑) ↔ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)))) | |
| 8 | 5, 6, 7 | 3bitr4ri 304 | . 2 ⊢ (((𝜓 ∧ 𝜑) ↔ 𝜑) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) | 
| 9 | 1, 2, 8 | 3bitri 297 | 1 ⊢ ((𝜑 → 𝜓) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: biadani 819 | 
| Copyright terms: Public domain | W3C validator |