Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > biimpor | Structured version Visualization version GIF version |
Description: A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
biimpor | ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((¬ 𝜑 ↔ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 850 | . 2 ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ (¬ (𝜑 ↔ 𝜓) ∨ 𝜒)) | |
2 | notbinot2 36346 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ 𝜓)) | |
3 | 2 | orbi1i 911 | . 2 ⊢ ((¬ (𝜑 ↔ 𝜓) ∨ 𝜒) ↔ ((¬ 𝜑 ↔ 𝜓) ∨ 𝜒)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((¬ 𝜑 ↔ 𝜓) ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |