| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version | ||
| Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
| 3 | df-or 848 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: imori 854 imorri 855 pm4.62 856 pm4.78 934 pm4.52 986 dfifp4 1066 dfifp5 1067 dfifp7 1069 norasslem1 1534 rb-bijust 1749 rb-imdf 1750 rb-ax1 1752 nf2 1785 relsnb 5749 soxp 8069 modom 9150 dffin7-2 10311 algcvgblem 16506 divgcdodd 16639 noinfprefixmo 27629 chrelat2i 32327 disjex 32554 disjexc 32555 meran1 36384 meran3 36386 bj-dfbi5 36547 bj-andnotim 36561 itg2addnclem2 37651 dvasin 37683 impor 38060 biimpor 38063 moeu2 38329 hlrelat2 39382 sticksstones1 42119 flt4lem7 42632 nna4b4nsq 42633 ifpim1 43442 ifpim2 43445 ifpidg 43464 ifpim23g 43468 ifpim123g 43473 ifpimimb 43477 ifpororb 43478 sqrtcvallem1 43604 hbimpgVD 44877 stoweidlem14 45996 fvmptrabdm 47278 fullthinc 49436 alimp-surprise 49766 eximp-surprise 49770 |
| Copyright terms: Public domain | W3C validator |