Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version |
Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
3 | df-or 844 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: imori 850 imorri 851 pm4.62 852 pm4.78 931 pm4.52 981 dfifp4 1063 dfifp5 1064 dfifp7 1066 norasslem1 1532 rb-bijust 1753 rb-imdf 1754 rb-ax1 1756 nf2 1789 relsnb 5701 soxp 7941 modom 8953 dffin7-2 10085 algcvgblem 16210 divgcdodd 16343 chrelat2i 30628 disjex 30832 disjexc 30833 noinfprefixmo 33831 meran1 34527 meran3 34529 bj-dfbi5 34682 bj-andnotim 34697 itg2addnclem2 35756 dvasin 35788 impor 36166 biimpor 36169 hlrelat2 37344 sticksstones1 40030 flt4lem7 40412 nna4b4nsq 40413 ifpim1 40974 ifpim2 40977 ifpidg 40996 ifpim23g 41000 ifpim123g 41005 ifpimimb 41009 ifpororb 41010 sqrtcvallem1 41128 hbimpgVD 42413 stoweidlem14 43445 fvmptrabdm 44672 fullthinc 46215 alimp-surprise 46370 eximp-surprise 46374 |
Copyright terms: Public domain | W3C validator |