| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version | ||
| Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
| 3 | df-or 848 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: imori 854 imorri 855 pm4.62 856 pm4.78 934 pm4.52 986 dfifp4 1066 dfifp5 1067 dfifp7 1069 norasslem1 1534 rb-bijust 1749 rb-imdf 1750 rb-ax1 1752 nf2 1785 relsnb 5768 soxp 8111 modom 9198 dffin7-2 10358 algcvgblem 16554 divgcdodd 16687 noinfprefixmo 27620 chrelat2i 32301 disjex 32528 disjexc 32529 meran1 36406 meran3 36408 bj-dfbi5 36569 bj-andnotim 36583 itg2addnclem2 37673 dvasin 37705 impor 38082 biimpor 38085 moeu2 38351 hlrelat2 39404 sticksstones1 42141 flt4lem7 42654 nna4b4nsq 42655 ifpim1 43465 ifpim2 43468 ifpidg 43487 ifpim23g 43491 ifpim123g 43496 ifpimimb 43500 ifpororb 43501 sqrtcvallem1 43627 hbimpgVD 44900 stoweidlem14 46019 fvmptrabdm 47298 fullthinc 49443 alimp-surprise 49773 eximp-surprise 49777 |
| Copyright terms: Public domain | W3C validator |