| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version | ||
| Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
| 3 | df-or 848 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: imori 854 imorri 855 pm4.62 856 pm4.78 934 pm4.52 986 dfifp4 1066 dfifp5 1067 dfifp7 1069 norasslem1 1535 rb-bijust 1750 rb-imdf 1751 rb-ax1 1753 nf2 1786 relsnb 5742 soxp 8059 modom 9135 dffin7-2 10286 algcvgblem 16485 divgcdodd 16618 noinfprefixmo 27638 chrelat2i 32340 disjex 32567 disjexc 32568 meran1 36444 meran3 36446 bj-dfbi5 36607 bj-andnotim 36621 itg2addnclem2 37711 dvasin 37743 impor 38120 biimpor 38123 moeu2 38389 hlrelat2 39441 sticksstones1 42178 flt4lem7 42691 nna4b4nsq 42692 ifpim1 43501 ifpim2 43504 ifpidg 43523 ifpim23g 43527 ifpim123g 43532 ifpimimb 43536 ifpororb 43537 sqrtcvallem1 43663 hbimpgVD 44935 stoweidlem14 46051 fvmptrabdm 47323 fullthinc 49481 alimp-surprise 49811 eximp-surprise 49815 |
| Copyright terms: Public domain | W3C validator |