| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version | ||
| Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
| 3 | df-or 848 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: imori 854 imorri 855 pm4.62 856 pm4.78 934 pm4.52 986 dfifp4 1066 dfifp5 1067 dfifp7 1069 norasslem1 1535 rb-bijust 1750 rb-imdf 1751 rb-ax1 1753 nf2 1786 relsnb 5746 soxp 8065 modom 9142 dffin7-2 10296 algcvgblem 16490 divgcdodd 16623 noinfprefixmo 27641 chrelat2i 32347 disjex 32574 disjexc 32575 meran1 36476 meran3 36478 bj-dfbi5 36639 bj-andnotim 36653 itg2addnclem2 37732 dvasin 37764 impor 38141 biimpor 38144 moeu2 38414 hlrelat2 39522 sticksstones1 42259 flt4lem7 42777 nna4b4nsq 42778 ifpim1 43586 ifpim2 43589 ifpidg 43608 ifpim23g 43612 ifpim123g 43617 ifpimimb 43621 ifpororb 43622 sqrtcvallem1 43748 hbimpgVD 45020 stoweidlem14 46136 fvmptrabdm 47417 fullthinc 49575 alimp-surprise 49905 eximp-surprise 49909 |
| Copyright terms: Public domain | W3C validator |