![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version |
Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
3 | df-or 848 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: imori 854 imorri 855 pm4.62 856 pm4.78 934 pm4.52 986 dfifp4 1066 dfifp5 1067 dfifp7 1069 norasslem1 1531 rb-bijust 1746 rb-imdf 1747 rb-ax1 1749 nf2 1782 relsnb 5815 soxp 8153 modom 9278 dffin7-2 10436 algcvgblem 16611 divgcdodd 16744 noinfprefixmo 27761 chrelat2i 32394 disjex 32612 disjexc 32613 meran1 36394 meran3 36396 bj-dfbi5 36557 bj-andnotim 36571 itg2addnclem2 37659 dvasin 37691 impor 38068 biimpor 38071 moeu2 38344 hlrelat2 39386 sticksstones1 42128 flt4lem7 42646 nna4b4nsq 42647 ifpim1 43459 ifpim2 43462 ifpidg 43481 ifpim23g 43485 ifpim123g 43490 ifpimimb 43494 ifpororb 43495 sqrtcvallem1 43621 hbimpgVD 44902 stoweidlem14 45970 fvmptrabdm 47243 fullthinc 48846 alimp-surprise 49011 eximp-surprise 49015 |
Copyright terms: Public domain | W3C validator |