| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version | ||
| Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
| 3 | df-or 848 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: imori 854 imorri 855 pm4.62 856 pm4.78 934 pm4.52 986 dfifp4 1066 dfifp5 1067 dfifp7 1069 norasslem1 1534 rb-bijust 1749 rb-imdf 1750 rb-ax1 1752 nf2 1785 relsnb 5765 soxp 8108 modom 9191 dffin7-2 10351 algcvgblem 16547 divgcdodd 16680 noinfprefixmo 27613 chrelat2i 32294 disjex 32521 disjexc 32522 meran1 36399 meran3 36401 bj-dfbi5 36562 bj-andnotim 36576 itg2addnclem2 37666 dvasin 37698 impor 38075 biimpor 38078 moeu2 38344 hlrelat2 39397 sticksstones1 42134 flt4lem7 42647 nna4b4nsq 42648 ifpim1 43458 ifpim2 43461 ifpidg 43480 ifpim23g 43484 ifpim123g 43489 ifpimimb 43493 ifpororb 43494 sqrtcvallem1 43620 hbimpgVD 44893 stoweidlem14 46012 fvmptrabdm 47294 fullthinc 49439 alimp-surprise 49769 eximp-surprise 49773 |
| Copyright terms: Public domain | W3C validator |