| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version | ||
| Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
| 3 | df-or 848 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: imori 854 imorri 855 pm4.62 856 pm4.78 934 pm4.52 986 dfifp4 1066 dfifp5 1067 dfifp7 1069 norasslem1 1534 rb-bijust 1749 rb-imdf 1750 rb-ax1 1752 nf2 1785 relsnb 5781 soxp 8128 modom 9252 dffin7-2 10412 algcvgblem 16596 divgcdodd 16729 noinfprefixmo 27665 chrelat2i 32346 disjex 32573 disjexc 32574 meran1 36429 meran3 36431 bj-dfbi5 36592 bj-andnotim 36606 itg2addnclem2 37696 dvasin 37728 impor 38105 biimpor 38108 moeu2 38380 hlrelat2 39422 sticksstones1 42159 flt4lem7 42682 nna4b4nsq 42683 ifpim1 43493 ifpim2 43496 ifpidg 43515 ifpim23g 43519 ifpim123g 43524 ifpimimb 43528 ifpororb 43529 sqrtcvallem1 43655 hbimpgVD 44928 stoweidlem14 46043 fvmptrabdm 47322 fullthinc 49336 alimp-surprise 49644 eximp-surprise 49648 |
| Copyright terms: Public domain | W3C validator |