![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imor | Structured version Visualization version GIF version |
Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
imor | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | imbi1i 349 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) |
3 | df-or 847 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: imori 853 imorri 854 pm4.62 855 pm4.78 933 pm4.52 985 dfifp4 1067 dfifp5 1068 dfifp7 1070 norasslem1 1531 rb-bijust 1747 rb-imdf 1748 rb-ax1 1750 nf2 1783 relsnb 5826 soxp 8170 modom 9307 dffin7-2 10467 algcvgblem 16624 divgcdodd 16757 noinfprefixmo 27764 chrelat2i 32397 disjex 32614 disjexc 32615 meran1 36377 meran3 36379 bj-dfbi5 36540 bj-andnotim 36554 itg2addnclem2 37632 dvasin 37664 impor 38041 biimpor 38044 moeu2 38318 hlrelat2 39360 sticksstones1 42103 flt4lem7 42614 nna4b4nsq 42615 ifpim1 43431 ifpim2 43434 ifpidg 43453 ifpim23g 43457 ifpim123g 43462 ifpimimb 43466 ifpororb 43467 sqrtcvallem1 43593 hbimpgVD 44875 stoweidlem14 45935 fvmptrabdm 47208 fullthinc 48713 alimp-surprise 48874 eximp-surprise 48878 |
Copyright terms: Public domain | W3C validator |