Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orfa1 | Structured version Visualization version GIF version |
Description: Add a contradicting disjunct to an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
orfa1.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orfa1 | ⊢ ((𝜑 ∨ ⊥) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orfa1.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | falim 1556 | . 2 ⊢ (⊥ → 𝜓) | |
3 | 1, 2 | jaoi 853 | 1 ⊢ ((𝜑 ∨ ⊥) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |