Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orfa1 Structured version   Visualization version   GIF version

Theorem orfa1 36243
Description: Add a contradicting disjunct to an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypothesis
Ref Expression
orfa1.1 (𝜑𝜓)
Assertion
Ref Expression
orfa1 ((𝜑 ∨ ⊥) → 𝜓)

Proof of Theorem orfa1
StepHypRef Expression
1 orfa1.1 . 2 (𝜑𝜓)
2 falim 1556 . 2 (⊥ → 𝜓)
31, 2jaoi 854 1 ((𝜑 ∨ ⊥) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator