![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version |
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | orbi2i 912 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: orbi12i 914 orordi 928 3ianor 1106 3or6 1446 norasslem1 1531 norass 1534 cadan 1606 19.45v 1991 19.45 2236 unass 4182 tz7.48lem 8480 dffin7-2 10436 zorng 10542 entri2 10596 grothprim 10872 leloe 11345 arch 12521 elznn0nn 12625 xrleloe 13183 swrdnnn0nd 14691 ressval3d 17292 ressval3dOLD 17293 opsrtoslem1 22097 fctop2 23028 alexsubALTlem3 24073 noextenddif 27728 sleloe 27814 precsexlem11 28256 eln0s 28373 colinearalg 28940 numclwwlk3lem2 30413 disjnf 32590 ballotlemfc0 34474 ballotlemfcc 34475 satfvsucsuc 35350 satfbrsuc 35351 fmlasuc 35371 ordcmp 36430 wl-df2-3mintru2 37468 poimirlem21 37628 ovoliunnfl 37649 biimpor 38071 tsim1 38117 leatb 39274 metakunt1 42187 expdioph 43012 dflim5 43319 ifpim123g 43490 ifpimimb 43494 ifpororb 43495 rp-fakeinunass 43505 andi3or 44014 uneqsn 44015 sbc3or 44530 en3lpVD 44843 el1fzopredsuc 47275 iccpartgt 47352 fmtno4prmfac 47497 dfvopnbgr2 47777 isubgr3stgrlem4 47872 ldepspr 48319 |
Copyright terms: Public domain | W3C validator |