| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
| 2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | orbi2i 912 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi12i 914 orordi 928 3ianor 1106 3or6 1449 norasslem1 1534 norass 1537 cadan 1609 19.45v 1999 19.45 2239 3r19.43 3102 unass 4131 tz7.48lem 8386 dffin7-2 10327 zorng 10433 entri2 10487 grothprim 10763 leloe 11236 arch 12415 elznn0nn 12519 xrleloe 13080 swrdnnn0nd 14597 ressval3d 17192 opsrtoslem1 21938 fctop2 22868 alexsubALTlem3 23912 noextenddif 27556 sleloe 27642 precsexlem11 28095 eln0s 28227 colinearalg 28813 numclwwlk3lem2 30286 disjnf 32472 ballotlemfc0 34457 ballotlemfcc 34458 satfvsucsuc 35325 satfbrsuc 35326 fmlasuc 35346 ordcmp 36408 wl-df2-3mintru2 37446 poimirlem21 37608 ovoliunnfl 37629 biimpor 38051 tsim1 38097 leatb 39258 expdioph 42985 dflim5 43291 ifpim123g 43462 ifpimimb 43466 ifpororb 43467 rp-fakeinunass 43477 andi3or 43986 uneqsn 43987 sbc3or 44495 en3lpVD 44807 el1fzopredsuc 47299 iccpartgt 47401 fmtno4prmfac 47546 dfvopnbgr2 47826 isubgr3stgrlem4 47941 gpgprismgr4cycllem7 48064 ldepspr 48435 |
| Copyright terms: Public domain | W3C validator |