| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
| 2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | orbi2i 912 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi12i 914 orordi 928 3ianor 1106 3or6 1449 norasslem1 1535 norass 1538 cadan 1610 19.45v 2000 19.45 2241 3r19.43 3101 unass 4117 tz7.48lem 8355 dffin7-2 10284 zorng 10390 entri2 10444 grothprim 10720 leloe 11194 arch 12373 elznn0nn 12477 xrleloe 13038 swrdnnn0nd 14559 ressval3d 17152 opsrtoslem1 21985 fctop2 22915 alexsubALTlem3 23959 noextenddif 27602 sleloe 27688 precsexlem11 28150 eln0s 28282 colinearalg 28883 numclwwlk3lem2 30356 disjnf 32542 ballotlemfc0 34498 ballotlemfcc 34499 satfvsucsuc 35401 satfbrsuc 35402 fmlasuc 35422 ordcmp 36481 wl-df2-3mintru2 37519 poimirlem21 37681 ovoliunnfl 37702 biimpor 38124 tsim1 38170 leatb 39331 expdioph 43056 dflim5 43362 ifpim123g 43533 ifpimimb 43537 ifpororb 43538 rp-fakeinunass 43548 andi3or 44057 uneqsn 44058 sbc3or 44565 en3lpVD 44877 el1fzopredsuc 47356 iccpartgt 47458 fmtno4prmfac 47603 dfvopnbgr2 47884 isubgr3stgrlem4 48000 gpgprismgr4cycllem7 48132 ldepspr 48505 |
| Copyright terms: Public domain | W3C validator |