![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version |
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 869 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | orbi2i 911 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
4 | orcom 869 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orbi12i 913 orordi 927 3ianor 1107 3or6 1447 norasslem1 1531 norass 1534 cadan 1606 19.45v 1993 19.45 2239 unass 4195 tz7.48lem 8497 dffin7-2 10467 zorng 10573 entri2 10627 grothprim 10903 leloe 11376 arch 12550 elznn0nn 12653 xrleloe 13206 swrdnnn0nd 14704 ressval3d 17305 ressval3dOLD 17306 opsrtoslem1 22102 fctop2 23033 alexsubALTlem3 24078 noextenddif 27731 sleloe 27817 precsexlem11 28259 eln0s 28376 colinearalg 28943 numclwwlk3lem2 30416 disjnf 32592 ballotlemfc0 34457 ballotlemfcc 34458 satfvsucsuc 35333 satfbrsuc 35334 fmlasuc 35354 ordcmp 36413 wl-df2-3mintru2 37451 poimirlem21 37601 ovoliunnfl 37622 biimpor 38044 tsim1 38090 leatb 39248 metakunt1 42162 expdioph 42980 dflim5 43291 ifpim123g 43462 ifpimimb 43466 ifpororb 43467 rp-fakeinunass 43477 andi3or 43986 uneqsn 43987 sbc3or 44503 en3lpVD 44816 el1fzopredsuc 47240 iccpartgt 47301 fmtno4prmfac 47446 dfvopnbgr2 47725 ldepspr 48202 |
Copyright terms: Public domain | W3C validator |