![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version |
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 868 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | orbi2i 911 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
4 | orcom 868 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 296 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: orbi12i 913 orordi 927 3ianor 1107 3or6 1447 norasslem1 1535 norass 1538 cadan 1610 19.45v 1997 19.45 2231 unass 4166 tz7.48lem 8440 dffin7-2 10392 zorng 10498 entri2 10552 grothprim 10828 leloe 11299 arch 12468 elznn0nn 12571 xrleloe 13122 swrdnnn0nd 14605 ressval3d 17190 ressval3dOLD 17191 opsrtoslem1 21615 fctop2 22507 alexsubALTlem3 23552 noextenddif 27168 sleloe 27254 precsexlem11 27660 colinearalg 28165 numclwwlk3lem2 29634 disjnf 31796 ballotlemfc0 33486 ballotlemfcc 33487 satfvsucsuc 34351 satfbrsuc 34352 fmlasuc 34372 ordcmp 35327 wl-df2-3mintru2 36361 poimirlem21 36504 ovoliunnfl 36525 biimpor 36947 tsim1 36993 leatb 38157 metakunt1 40980 expdioph 41752 dflim5 42069 ifpim123g 42241 ifpimimb 42245 ifpororb 42246 rp-fakeinunass 42256 andi3or 42765 uneqsn 42766 sbc3or 43283 en3lpVD 43596 el1fzopredsuc 46023 iccpartgt 46085 fmtno4prmfac 46230 ldepspr 47144 |
Copyright terms: Public domain | W3C validator |