Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version |
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 867 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | orbi2i 910 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
4 | orcom 867 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: orbi12i 912 orordi 926 3ianor 1106 3or6 1446 norasslem1 1532 norass 1535 cadan 1611 19.45v 1997 19.45 2231 unass 4100 tz7.48lem 8272 dffin7-2 10154 zorng 10260 entri2 10314 grothprim 10590 leloe 11061 arch 12230 elznn0nn 12333 xrleloe 12878 swrdnnn0nd 14369 ressval3d 16956 ressval3dOLD 16957 opsrtoslem1 21262 fctop2 22155 alexsubALTlem3 23200 colinearalg 27278 numclwwlk3lem2 28748 disjnf 30909 ballotlemfc0 32459 ballotlemfcc 32460 satfvsucsuc 33327 satfbrsuc 33328 fmlasuc 33348 otthne 33682 noextenddif 33871 sleloe 33957 ordcmp 34636 wl-df2-3mintru2 35656 poimirlem21 35798 ovoliunnfl 35819 biimpor 36242 tsim1 36288 leatb 37306 metakunt1 40125 expdioph 40845 ifpim123g 41107 ifpimimb 41111 ifpororb 41112 rp-fakeinunass 41122 andi3or 41632 uneqsn 41633 sbc3or 42152 en3lpVD 42465 el1fzopredsuc 44817 iccpartgt 44879 fmtno4prmfac 45024 ldepspr 45814 |
Copyright terms: Public domain | W3C validator |