| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
| 2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | orbi2i 912 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi12i 914 orordi 928 3ianor 1106 3or6 1449 norasslem1 1534 norass 1537 cadan 1609 19.45v 1999 19.45 2239 3r19.43 3110 unass 4152 tz7.48lem 8460 dffin7-2 10417 zorng 10523 entri2 10577 grothprim 10853 leloe 11326 arch 12503 elznn0nn 12607 xrleloe 13165 swrdnnn0nd 14679 ressval3d 17272 opsrtoslem1 22018 fctop2 22948 alexsubALTlem3 23992 noextenddif 27637 sleloe 27723 precsexlem11 28176 eln0s 28308 colinearalg 28894 numclwwlk3lem2 30370 disjnf 32556 ballotlemfc0 34530 ballotlemfcc 34531 satfvsucsuc 35392 satfbrsuc 35393 fmlasuc 35413 ordcmp 36470 wl-df2-3mintru2 37508 poimirlem21 37670 ovoliunnfl 37691 biimpor 38113 tsim1 38159 leatb 39315 expdioph 43014 dflim5 43320 ifpim123g 43491 ifpimimb 43495 ifpororb 43496 rp-fakeinunass 43506 andi3or 44015 uneqsn 44016 sbc3or 44524 en3lpVD 44836 el1fzopredsuc 47321 iccpartgt 47408 fmtno4prmfac 47553 dfvopnbgr2 47833 isubgr3stgrlem4 47948 gpgprismgr4cycllem7 48067 ldepspr 48416 |
| Copyright terms: Public domain | W3C validator |