MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbi1i Structured version   Visualization version   GIF version

Theorem orbi1i 913
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
orbi2i.1 (𝜑𝜓)
Assertion
Ref Expression
orbi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem orbi1i
StepHypRef Expression
1 orcom 870 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 orbi2i.1 . . 3 (𝜑𝜓)
32orbi2i 912 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 orcom 870 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 297 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orbi12i  914  orordi  928  3ianor  1106  3or6  1449  norasslem1  1534  norass  1537  cadan  1609  19.45v  1999  19.45  2239  3r19.43  3102  unass  4131  tz7.48lem  8386  dffin7-2  10327  zorng  10433  entri2  10487  grothprim  10763  leloe  11236  arch  12415  elznn0nn  12519  xrleloe  13080  swrdnnn0nd  14597  ressval3d  17192  opsrtoslem1  21938  fctop2  22868  alexsubALTlem3  23912  noextenddif  27556  sleloe  27642  precsexlem11  28095  eln0s  28227  colinearalg  28813  numclwwlk3lem2  30286  disjnf  32472  ballotlemfc0  34457  ballotlemfcc  34458  satfvsucsuc  35325  satfbrsuc  35326  fmlasuc  35346  ordcmp  36408  wl-df2-3mintru2  37446  poimirlem21  37608  ovoliunnfl  37629  biimpor  38051  tsim1  38097  leatb  39258  expdioph  42985  dflim5  43291  ifpim123g  43462  ifpimimb  43466  ifpororb  43467  rp-fakeinunass  43477  andi3or  43986  uneqsn  43987  sbc3or  44495  en3lpVD  44807  el1fzopredsuc  47299  iccpartgt  47401  fmtno4prmfac  47546  dfvopnbgr2  47826  isubgr3stgrlem4  47941  gpgprismgr4cycllem7  48064  ldepspr  48435
  Copyright terms: Public domain W3C validator