![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version |
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 869 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | orbi2i 912 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
4 | orcom 869 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: orbi12i 914 orordi 928 3ianor 1108 3or6 1448 norasslem1 1536 norass 1539 cadan 1611 19.45v 1998 19.45 2232 unass 4167 tz7.48lem 8441 dffin7-2 10393 zorng 10499 entri2 10553 grothprim 10829 leloe 11300 arch 12469 elznn0nn 12572 xrleloe 13123 swrdnnn0nd 14606 ressval3d 17191 ressval3dOLD 17192 opsrtoslem1 21616 fctop2 22508 alexsubALTlem3 23553 noextenddif 27171 sleloe 27257 precsexlem11 27666 colinearalg 28199 numclwwlk3lem2 29668 disjnf 31832 ballotlemfc0 33522 ballotlemfcc 33523 satfvsucsuc 34387 satfbrsuc 34388 fmlasuc 34408 ordcmp 35380 wl-df2-3mintru2 36414 poimirlem21 36557 ovoliunnfl 36578 biimpor 37000 tsim1 37046 leatb 38210 metakunt1 41033 expdioph 41810 dflim5 42127 ifpim123g 42299 ifpimimb 42303 ifpororb 42304 rp-fakeinunass 42314 andi3or 42823 uneqsn 42824 sbc3or 43341 en3lpVD 43654 el1fzopredsuc 46081 iccpartgt 46143 fmtno4prmfac 46288 ldepspr 47202 |
Copyright terms: Public domain | W3C validator |