| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
| 2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | orbi2i 912 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi12i 914 orordi 928 3ianor 1106 3or6 1449 norasslem1 1534 norass 1537 cadan 1609 19.45v 1999 19.45 2239 3r19.43 3098 unass 4123 tz7.48lem 8363 dffin7-2 10292 zorng 10398 entri2 10452 grothprim 10728 leloe 11202 arch 12381 elznn0nn 12485 xrleloe 13046 swrdnnn0nd 14563 ressval3d 17157 opsrtoslem1 21960 fctop2 22890 alexsubALTlem3 23934 noextenddif 27578 sleloe 27664 precsexlem11 28124 eln0s 28256 colinearalg 28855 numclwwlk3lem2 30328 disjnf 32514 ballotlemfc0 34461 ballotlemfcc 34462 satfvsucsuc 35338 satfbrsuc 35339 fmlasuc 35359 ordcmp 36421 wl-df2-3mintru2 37459 poimirlem21 37621 ovoliunnfl 37642 biimpor 38064 tsim1 38110 leatb 39271 expdioph 42996 dflim5 43302 ifpim123g 43473 ifpimimb 43477 ifpororb 43478 rp-fakeinunass 43488 andi3or 43997 uneqsn 43998 sbc3or 44506 en3lpVD 44818 el1fzopredsuc 47309 iccpartgt 47411 fmtno4prmfac 47556 dfvopnbgr2 47837 isubgr3stgrlem4 47953 gpgprismgr4cycllem7 48085 ldepspr 48458 |
| Copyright terms: Public domain | W3C validator |