| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
| 2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | orbi2i 912 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi12i 914 orordi 928 3ianor 1106 3or6 1449 norasslem1 1534 norass 1537 cadan 1609 19.45v 1999 19.45 2239 3r19.43 3102 unass 4135 tz7.48lem 8409 dffin7-2 10351 zorng 10457 entri2 10511 grothprim 10787 leloe 11260 arch 12439 elznn0nn 12543 xrleloe 13104 swrdnnn0nd 14621 ressval3d 17216 opsrtoslem1 21962 fctop2 22892 alexsubALTlem3 23936 noextenddif 27580 sleloe 27666 precsexlem11 28119 eln0s 28251 colinearalg 28837 numclwwlk3lem2 30313 disjnf 32499 ballotlemfc0 34484 ballotlemfcc 34485 satfvsucsuc 35352 satfbrsuc 35353 fmlasuc 35373 ordcmp 36435 wl-df2-3mintru2 37473 poimirlem21 37635 ovoliunnfl 37656 biimpor 38078 tsim1 38124 leatb 39285 expdioph 43012 dflim5 43318 ifpim123g 43489 ifpimimb 43493 ifpororb 43494 rp-fakeinunass 43504 andi3or 44013 uneqsn 44014 sbc3or 44522 en3lpVD 44834 el1fzopredsuc 47323 iccpartgt 47425 fmtno4prmfac 47570 dfvopnbgr2 47850 isubgr3stgrlem4 47965 gpgprismgr4cycllem7 48088 ldepspr 48459 |
| Copyright terms: Public domain | W3C validator |