Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2alim Structured version   Visualization version   GIF version

Theorem bj-2alim 34719
Description: Closed form of 2alimi 1816. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-2alim (∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓))

Proof of Theorem bj-2alim
StepHypRef Expression
1 alim 1814 . 2 (∀𝑦(𝜑𝜓) → (∀𝑦𝜑 → ∀𝑦𝜓))
21al2imi 1819 1 (∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1799  ax-4 1813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator