Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alimi 1814 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
3 | 2 | alimi 1814 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1798 ax-4 1812 |
This theorem is referenced by: alcomiw 2046 alcomiwOLD 2047 2mo 2650 2eu6 2658 euind 3659 reuind 3688 sbnfc2 4370 opelopabt 5445 ssrel 5693 ssrelOLD 5694 ssrelrel 5706 fundif 6483 opabbrex 7326 fnoprabg 7397 tz7.48lem 8272 ssrelf 30955 bj-3exbi 34798 mpobi123f 36320 mptbi12f 36324 ismrc 40523 refimssco 41215 19.33-2 42000 pm11.63 42013 pm11.71 42015 axc5c4c711to11 42023 ichal 44918 |
Copyright terms: Public domain | W3C validator |