MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1813
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1812 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1812 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-gen 1796  ax-4 1810
This theorem is referenced by:  alcomimw  2044  2mo  2645  2eu6  2654  euind  3679  reuind  3708  sbnfc2  4388  opelopabt  5477  ssrel  5729  ssrelrel  5742  fundif  6537  opabbrex  7407  fnoprabg  7477  tz7.48lem  8368  ssrelf  32602  bj-3exbi  36683  mpobi123f  38225  mptbi12f  38229  ismrc  42821  refimssco  43727  19.33-2  44502  pm11.63  44515  pm11.71  44517  axc5c4c711to11  44525  ichal  47593
  Copyright terms: Public domain W3C validator