MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1815
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1814 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1814 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-gen 1798  ax-4 1812
This theorem is referenced by:  alcomiw  2046  alcomiwOLD  2047  2mo  2650  2eu6  2658  euind  3659  reuind  3688  sbnfc2  4370  opelopabt  5445  ssrel  5693  ssrelOLD  5694  ssrelrel  5706  fundif  6483  opabbrex  7326  fnoprabg  7397  tz7.48lem  8272  ssrelf  30955  bj-3exbi  34798  mpobi123f  36320  mptbi12f  36324  ismrc  40523  refimssco  41215  19.33-2  42000  pm11.63  42013  pm11.71  42015  axc5c4c711to11  42023  ichal  44918
  Copyright terms: Public domain W3C validator