![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alimi 1809 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
3 | 2 | alimi 1809 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1793 ax-4 1807 |
This theorem is referenced by: alcomimw 2042 2mo 2651 2eu6 2660 euind 3746 reuind 3775 sbnfc2 4462 opelopabt 5551 ssrel 5806 ssrelOLD 5807 ssrelrel 5820 fundif 6627 opabbrex 7501 fnoprabg 7573 tz7.48lem 8497 ssrelf 32637 bj-3exbi 36582 mpobi123f 38122 mptbi12f 38126 ismrc 42657 refimssco 43569 19.33-2 44351 pm11.63 44364 pm11.71 44366 axc5c4c711to11 44374 ichal 47340 |
Copyright terms: Public domain | W3C validator |