MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1813
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1812 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1812 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-gen 1796  ax-4 1810
This theorem is referenced by:  alcomimw  2044  2mo  2643  2eu6  2652  euind  3683  reuind  3712  sbnfc2  4389  opelopabt  5472  ssrel  5723  ssrelrel  5736  fundif  6530  opabbrex  7399  fnoprabg  7469  tz7.48lem  8360  ssrelf  32596  bj-3exbi  36656  mpobi123f  38208  mptbi12f  38212  ismrc  42740  refimssco  43646  19.33-2  44421  pm11.63  44434  pm11.71  44436  axc5c4c711to11  44444  ichal  47503
  Copyright terms: Public domain W3C validator