MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1818
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1817 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1817 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-gen 1801  ax-4 1815
This theorem is referenced by:  alcomiw  2049  alcomiwOLD  2050  2mo  2651  2eu6  2659  euind  3662  reuind  3691  sbnfc2  4375  opelopabt  5446  ssrel  5691  ssrelrel  5703  fundif  6479  opabbrex  7319  fnoprabg  7388  tz7.48lem  8256  ssrelf  30934  bj-3exbi  34777  mpobi123f  36299  mptbi12f  36303  ismrc  40503  refimssco  41168  19.33-2  41953  pm11.63  41966  pm11.71  41968  axc5c4c711to11  41976  ichal  44870
  Copyright terms: Public domain W3C validator