![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
3 | 2 | alimi 1811 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1795 ax-4 1809 |
This theorem is referenced by: alcomiw 2044 2mo 2642 2eu6 2650 euind 3721 reuind 3750 sbnfc2 4437 opelopabt 5533 ssrel 5783 ssrelOLD 5784 ssrelrel 5797 fundif 6598 opabbrex 7464 fnoprabg 7535 tz7.48lem 8445 ssrelf 32109 bj-3exbi 35799 mpobi123f 37335 mptbi12f 37339 ismrc 41743 refimssco 42662 19.33-2 43445 pm11.63 43458 pm11.71 43460 axc5c4c711to11 43468 ichal 46434 |
Copyright terms: Public domain | W3C validator |