Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alimi 1815 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
3 | 2 | alimi 1815 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1799 ax-4 1813 |
This theorem is referenced by: alcomiw 2047 alcomiwOLD 2048 2mo 2650 2eu6 2658 euind 3654 reuind 3683 sbnfc2 4367 opelopabt 5438 ssrel 5683 ssrelrel 5695 fundif 6467 opabbrex 7306 fnoprabg 7375 tz7.48lem 8242 ssrelf 30856 bj-3exbi 34725 mpobi123f 36247 mptbi12f 36251 ismrc 40439 refimssco 41104 19.33-2 41889 pm11.63 41902 pm11.71 41904 axc5c4c711to11 41912 ichal 44806 |
Copyright terms: Public domain | W3C validator |