MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1810
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1809 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1809 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-gen 1793  ax-4 1807
This theorem is referenced by:  alcomimw  2042  2mo  2651  2eu6  2660  euind  3746  reuind  3775  sbnfc2  4462  opelopabt  5551  ssrel  5806  ssrelOLD  5807  ssrelrel  5820  fundif  6627  opabbrex  7501  fnoprabg  7573  tz7.48lem  8497  ssrelf  32637  bj-3exbi  36582  mpobi123f  38122  mptbi12f  38126  ismrc  42657  refimssco  43569  19.33-2  44351  pm11.63  44364  pm11.71  44366  axc5c4c711to11  44374  ichal  47340
  Copyright terms: Public domain W3C validator