| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version | ||
| Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| alimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alimi 1811 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alcomimw 2043 2mo 2648 2eu6 2657 euind 3712 reuind 3741 sbnfc2 4419 opelopabt 5512 ssrel 5766 ssrelOLD 5767 ssrelrel 5780 fundif 6590 opabbrex 7463 fnoprabg 7535 tz7.48lem 8460 ssrelf 32600 bj-3exbi 36639 mpobi123f 38191 mptbi12f 38195 ismrc 42691 refimssco 43598 19.33-2 44373 pm11.63 44386 pm11.71 44388 axc5c4c711to11 44396 ichal 47447 |
| Copyright terms: Public domain | W3C validator |