MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1812
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1811 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1811 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-gen 1795  ax-4 1809
This theorem is referenced by:  alcomimw  2043  2mo  2641  2eu6  2650  euind  3695  reuind  3724  sbnfc2  4402  opelopabt  5492  ssrel  5745  ssrelOLD  5746  ssrelrel  5759  fundif  6565  opabbrex  7440  fnoprabg  7512  tz7.48lem  8409  ssrelf  32543  bj-3exbi  36604  mpobi123f  38156  mptbi12f  38160  ismrc  42689  refimssco  43596  19.33-2  44371  pm11.63  44384  pm11.71  44386  axc5c4c711to11  44394  ichal  47464
  Copyright terms: Public domain W3C validator