| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version | ||
| Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| alimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alimi 1812 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alimi 1812 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1796 ax-4 1810 |
| This theorem is referenced by: alcomimw 2044 2mo 2643 2eu6 2652 euind 3683 reuind 3712 sbnfc2 4389 opelopabt 5472 ssrel 5723 ssrelrel 5736 fundif 6530 opabbrex 7399 fnoprabg 7469 tz7.48lem 8360 ssrelf 32596 bj-3exbi 36656 mpobi123f 38208 mptbi12f 38212 ismrc 42740 refimssco 43646 19.33-2 44421 pm11.63 44434 pm11.71 44436 axc5c4c711to11 44444 ichal 47503 |
| Copyright terms: Public domain | W3C validator |