MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1815
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1814 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1814 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-gen 1798  ax-4 1812
This theorem is referenced by:  alcomiw  2047  2mo  2645  2eu6  2653  euind  3721  reuind  3750  sbnfc2  4437  opelopabt  5533  ssrel  5783  ssrelOLD  5784  ssrelrel  5797  fundif  6598  opabbrex  7460  fnoprabg  7531  tz7.48lem  8441  ssrelf  31875  bj-3exbi  35542  mpobi123f  37078  mptbi12f  37082  ismrc  41487  refimssco  42406  19.33-2  43189  pm11.63  43202  pm11.71  43204  axc5c4c711to11  43212  ichal  46182
  Copyright terms: Public domain W3C validator