![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alimi 1814 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
3 | 2 | alimi 1814 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1798 ax-4 1812 |
This theorem is referenced by: alcomiw 2047 2mo 2645 2eu6 2653 euind 3721 reuind 3750 sbnfc2 4437 opelopabt 5533 ssrel 5783 ssrelOLD 5784 ssrelrel 5797 fundif 6598 opabbrex 7460 fnoprabg 7531 tz7.48lem 8441 ssrelf 31875 bj-3exbi 35542 mpobi123f 37078 mptbi12f 37082 ismrc 41487 refimssco 42406 19.33-2 43189 pm11.63 43202 pm11.71 43204 axc5c4c711to11 43212 ichal 46182 |
Copyright terms: Public domain | W3C validator |