MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1812
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1811 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1811 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-gen 1795  ax-4 1809
This theorem is referenced by:  alcomimw  2043  2mo  2641  2eu6  2650  euind  3686  reuind  3715  sbnfc2  4392  opelopabt  5479  ssrel  5730  ssrelrel  5743  fundif  6535  opabbrex  7406  fnoprabg  7476  tz7.48lem  8370  ssrelf  32576  bj-3exbi  36592  mpobi123f  38144  mptbi12f  38148  ismrc  42677  refimssco  43583  19.33-2  44358  pm11.63  44371  pm11.71  44373  axc5c4c711to11  44381  ichal  47454
  Copyright terms: Public domain W3C validator