| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version | ||
| Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| alimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alimi 1811 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alcomimw 2043 2mo 2641 2eu6 2650 euind 3686 reuind 3715 sbnfc2 4392 opelopabt 5479 ssrel 5730 ssrelrel 5743 fundif 6535 opabbrex 7406 fnoprabg 7476 tz7.48lem 8370 ssrelf 32576 bj-3exbi 36592 mpobi123f 38144 mptbi12f 38148 ismrc 42677 refimssco 43583 19.33-2 44358 pm11.63 44371 pm11.71 44373 axc5c4c711to11 44381 ichal 47454 |
| Copyright terms: Public domain | W3C validator |