Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alimi 1817 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
3 | 2 | alimi 1817 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1801 ax-4 1815 |
This theorem is referenced by: alcomiw 2049 alcomiwOLD 2050 2mo 2651 2eu6 2659 euind 3662 reuind 3691 sbnfc2 4375 opelopabt 5446 ssrel 5691 ssrelrel 5703 fundif 6479 opabbrex 7319 fnoprabg 7388 tz7.48lem 8256 ssrelf 30934 bj-3exbi 34777 mpobi123f 36299 mptbi12f 36303 ismrc 40503 refimssco 41168 19.33-2 41953 pm11.63 41966 pm11.71 41968 axc5c4c711to11 41976 ichal 44870 |
Copyright terms: Public domain | W3C validator |