MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1812
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1811 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1811 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-gen 1795  ax-4 1809
This theorem is referenced by:  alcomimw  2043  2mo  2648  2eu6  2657  euind  3712  reuind  3741  sbnfc2  4419  opelopabt  5512  ssrel  5766  ssrelOLD  5767  ssrelrel  5780  fundif  6590  opabbrex  7463  fnoprabg  7535  tz7.48lem  8460  ssrelf  32600  bj-3exbi  36639  mpobi123f  38191  mptbi12f  38195  ismrc  42691  refimssco  43598  19.33-2  44373  pm11.63  44386  pm11.71  44388  axc5c4c711to11  44396  ichal  47447
  Copyright terms: Public domain W3C validator