| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version | ||
| Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| alimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alimi 1811 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alcomimw 2043 2mo 2641 2eu6 2650 euind 3695 reuind 3724 sbnfc2 4402 opelopabt 5492 ssrel 5745 ssrelOLD 5746 ssrelrel 5759 fundif 6565 opabbrex 7440 fnoprabg 7512 tz7.48lem 8409 ssrelf 32543 bj-3exbi 36604 mpobi123f 38156 mptbi12f 38160 ismrc 42689 refimssco 43596 19.33-2 44371 pm11.63 44384 pm11.71 44386 axc5c4c711to11 44394 ichal 47464 |
| Copyright terms: Public domain | W3C validator |