Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mpgs Structured version   Visualization version   GIF version

Theorem bj-mpgs 34718
Description: From a closed form theorem (the major premise) with an antecedent in the "strong necessity" modality (in the language of modal logic), deduce the inference 𝜑𝜓. Strong necessity is stronger than necessity, and equivalent to it when sp 2178 (modal T) is available. Therefore, this theorem is stronger than mpg 1801 when sp 2178 is not available. (Contributed by BJ, 1-Nov-2023.)
Hypotheses
Ref Expression
bj-mpgs.min 𝜑
bj-mpgs.maj ((𝜑 ∧ ∀𝑥𝜑) → 𝜓)
Assertion
Ref Expression
bj-mpgs 𝜓

Proof of Theorem bj-mpgs
StepHypRef Expression
1 bj-mpgs.min . 2 𝜑
21ax-gen 1799 . 2 𝑥𝜑
3 bj-mpgs.maj . 2 ((𝜑 ∧ ∀𝑥𝜑) → 𝜓)
41, 2, 3mp2an 688 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  bj-nnfbii  34836  bj-nnfth  34851
  Copyright terms: Public domain W3C validator