Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbval Structured version   Visualization version   GIF version

Theorem bj-cbval 34757
Description: Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-cbval.denote 𝑦𝑥 𝑥 = 𝑦
bj-cbval.denote2 𝑥𝑦 𝑦 = 𝑥
bj-cbval.maj (𝑥 = 𝑦 → (𝜑𝜓))
bj-cbval.equcomiv (𝑦 = 𝑥𝑥 = 𝑦)
Assertion
Ref Expression
bj-cbval (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem bj-cbval
StepHypRef Expression
1 bj-cbval.maj . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 228 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
3 bj-cbval.denote . . 3 𝑦𝑥 𝑥 = 𝑦
42, 3bj-cbvalimi 34755 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
5 bj-cbval.equcomiv . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
61biimprd 247 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
75, 6syl 17 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
8 bj-cbval.denote2 . . 3 𝑥𝑦 𝑦 = 𝑥
97, 8bj-cbvalimi 34755 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
104, 9impbii 208 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator