Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbvalimi Structured version   Visualization version   GIF version

Theorem bj-cbvalimi 34807
Description: An equality-free general instance of one half of a precise form of bj-cbval 34809. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-cbvalimi.maj (𝜒 → (𝜑𝜓))
bj-cbvalimi.denote 𝑦𝑥𝜒
Assertion
Ref Expression
bj-cbvalimi (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem bj-cbvalimi
StepHypRef Expression
1 bj-cbvalimi.denote . 2 𝑦𝑥𝜒
2 bj-cbvalimi.maj . . 3 (𝜒 → (𝜑𝜓))
32gen2 1802 . 2 𝑦𝑥(𝜒 → (𝜑𝜓))
4 bj-cbvalim 34805 . 2 (∀𝑦𝑥𝜒 → (∀𝑦𝑥(𝜒 → (𝜑𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
51, 3, 4mp2 9 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916
This theorem depends on definitions:  df-bi 206  df-ex 1786
This theorem is referenced by:  bj-cbval  34809
  Copyright terms: Public domain W3C validator