Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimpd | Structured version Visualization version GIF version |
Description: Deduce an implication from a logical equivalence. Deduction associated with biimp 214 and biimpi 215. (Contributed by NM, 11-Jan-1993.) |
Ref | Expression |
---|---|
biimpd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpd | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biimp 214 | . 2 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Copyright terms: Public domain | W3C validator |