Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-exalims | Structured version Visualization version GIF version |
Description: Distributing quantifiers over a nested implication. (Almost) the general statement that spimfw 1970 proves. (Contributed by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
bj-exalims.1 | ⊢ (∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒)) |
Ref | Expression |
---|---|
bj-exalims | ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-exalim 34740 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒))) | |
2 | bj-exalims.1 | . . . 4 ⊢ (∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒)) | |
3 | eximal 1786 | . . . 4 ⊢ ((∃𝑥𝜒 → 𝜒) ↔ (¬ 𝜒 → ∀𝑥 ¬ 𝜒)) | |
4 | 2, 3 | sylibr 233 | . . 3 ⊢ (∃𝑥𝜑 → (∃𝑥𝜒 → 𝜒)) |
5 | 4 | a1i 11 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∃𝑥𝜑 → (∃𝑥𝜒 → 𝜒))) |
6 | 1, 5 | syldd 72 | 1 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bj-exalimsi 34743 |
Copyright terms: Public domain | W3C validator |