Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-exalim Structured version   Visualization version   GIF version

Theorem bj-exalim 35509
Description: Distribute quantifiers over a nested implication.

This and the following theorems are the general instances of already proved theorems. They could be moved to the main part, before ax-5 1914. I propose to move to the main part: bj-exalim 35509, bj-exalimi 35510, bj-exalims 35511, bj-exalimsi 35512, bj-ax12i 35514, bj-ax12wlem 35521, bj-ax12w 35554. A new label is needed for bj-ax12i 35514 and label suggestions are welcome for the others. I also propose to change ¬ ∀𝑥¬ to 𝑥 in speimfw 1968 and spimfw 1970 (other spim* theorems use 𝑥 and very few theorems in set.mm use ¬ ∀𝑥¬). (Contributed by BJ, 8-Nov-2021.)

Assertion
Ref Expression
bj-exalim (∀𝑥(𝜑 → (𝜓𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒)))

Proof of Theorem bj-exalim
StepHypRef Expression
1 pm2.04 90 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
21alimi 1814 . 2 (∀𝑥(𝜑 → (𝜓𝜒)) → ∀𝑥(𝜓 → (𝜑𝜒)))
3 bj-alexim 35504 . 2 (∀𝑥(𝜓 → (𝜑𝜒)) → (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥𝜒)))
4 pm2.04 90 . 2 ((∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒)))
52, 3, 43syl 18 1 (∀𝑥(𝜑 → (𝜓𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  bj-exalims  35511  bj-cbveximt  35517
  Copyright terms: Public domain W3C validator